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LONG WRITE-UP

1 Introduction

Objects with indices are often used in math-

ematics and physics. Tensors are classical

examples here [1, 2]. Indexed objects can

have very complicated and intricated prop-

erties. For example the Riemann tensor has

symmetry properties with respect to permu-

tation of indices. Moreover it satis�es the

cyclic identity [1]. There are a number of

linear identities with many terms in the case

of Riemann-Cartan geometry with torsion

[2].

So there is a problem of reduction of

expressions which contain indexed objects,

called "tensor expressions" below.

Two reduction strategies can be used.

First, the corresponding expressions are

expanded in terms of basic elements to re-

solve symmetries and identities in the ex-

plicit form. However, this way requires in-

troducing a lot of objects of di�erent types

and rules for their management. In the Rie-

mann tensor case, these are the Christofel

symbol, the metric tensor, and their deriva-

tives. As a rule, this leads to large inter-

mediate expressions. Furthermore, such an

approach fails, for instance, in the case of

geometry with torsion.

Second strategy is to consider indexed

objects as formal objects with some prop-

erties. Note that if we consider tensors

which have only symmetries correspond-

ing to permutation indices and renaming

dummy ones then the problem can be solved

in terms of double cosets of permutation

group [3]. However, if linear identities with

many terms (> 2) are present, this approach

fails because the summation operator leaves

the group framework.

Our approach to the problem of simpli-

�cation of tensor expressions is based on

the consideration of tensor expressions as

vectors in some linear space. The prelimi-

nary version of this idea was proposed in [4].

The advanced version of the algorithm was

presented at ISSAC'91 [8] and AIHENP-92

[9]. Here we present a program in which we

implement the proposed algorithm in RE-

DUCE and give a detailed description of the

program. We generalized the algorithm to

the case of tensor multiplication.

Complementary approach was developed

in [11]. Here Young diagram technique was

used to solve the simpli�cation problem in

some speci�c case. Namely, when dummy

indices are allowed only between basic ten-

sors for which generic symmetry relations

and multiterm linear identities should be

imposed. Although this algorithm is a pow-

erful tool in `indicial tensor calculations' of

asymptotic expansions of heat kernels of dif-

ferential operators it fails in general case.

From the user's point of view, there are

three groups of tensor properties:

S - symmetry with respect to index permu-

tations;

I - linear identities.

D - invariance with respect to renamings of

dummy indices;

As an illustration, for the Riemann cur-

vature tensor these properties are:

S: R

abcd

= R

cdab

; R

abcd

= �R

bacd

;

I: R

abcd

+ R

acdb

+R

adbc

= 0;

D: R

abcd

R

ckmn

R

dlps

= R

abdc

R

dkmn

R

clps

:

Note that multiterm linear identities will

produce many rewriting rules which can

complicate the problem essentially.

The problem under investigation can be

formulated as a question: whether two ten-

sor expressions are equal or not, taking into

account S-I-D properties? Then the prob-
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lem of simplest (shortest) canonical form for

given expression arises as a central one.

2 Basic tensors and ten-

sor expressions

Let us give some de�nitions.

Under basic tensors we will understand

the object with �nite number of indices

which can have such properties as symmetry

and multiterm linear identities

1

.

Then, under tensor expression we will un-

derstand any expression which can be ob-

tained from basic tensors with the help of

the following operations:

� summation with integer coe�cients;

� multiplication (commutative) of basic

tensors

2

.

We assume that all terms in the tensor

expression have the same number of indices.

Some pairs of them are marked as dummy

ones. The set of nondummy names have

to be the same for each term in the tensor

expression. The names of dummies can be

arbitrary.

3 Algebraic approach

To start with, let us consider the case of one

basic tensor and tensor expressions which

are linear combinations of this basic tensor

with integer coe�cients (i.e. without multi-

plication of tensors).

Let a tensor F has indices �

1

; : : : ; �

n

.

There are n! formally di�erent objects

F

�(�

1

;:::;�

n

)

; � =

�

1 � � � n

�(1) � � � �(n)

�

2 S

n

;

1

The symmetry relations are partial case of lin-

ear identities indeed

2

Including contraction of indices.

where S

n

is the group of permutations of the

set (1; : : : ; n) and

�(�

1

; : : : ; �

n

) � (�(�

1

); : : : ; �(�

n

))

.

If F has symmetries with respect to in-

dex permutations it means that there is a

subgroup H 2 S

n

such that

F

h��

� d(h) � F

�

= 0; 8h 2 S

n

;

d(h) 2 R

1

; h�� � (�(h(�

1

)); : : : ; �(h(�

n

))):

Multiterm linear identities can be written

in the following form

X

�2S

n

�

�

� F

�

= 0; �

�

2 R

1

:

If some pairs of dummy indices are

present without any loss of generality we

may suppose that their names are already

normalized in some way, i.e. they have

�xed names. Therefore one can only ex-

change these names: 1) change names in-

side each pair and 2) change pairs of these

names. With this restriction the exchanging

of dummy indices means that a subgroup

M 2 S

n

exists such that

3

F

��m(�

1

;���;�

n

)

= F

�

; 8 m 2M;� 2 S

n

:

Let us consider now the group algebra of

S

n

[5]. This is a linear space R

n!

in which

unit vectors correspond to permutations:

R

n!

3 e

�

$ � 2 S

n

:

The vectors e

�

are orthogonal to each

other in the Euclidean metric.

3

The di�erence in actions of H and M on S

n

in the discussed relations (h � � and � � m ) is

connected with the di�erent nature of these trans-

formations: the symmetry acts upon place of in-

dices while dummy indices renaming acts upon the

names.
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So we have an explicit isomorphism be-

tween tensor expressions and points in R

n!

:

X

�

�

�

� e

�

$

X

�

�

�

� F

�

;

3.1 Subspace K

In terms of R

n!

, the left hand sides of the

S-I-D relations correspond to the vectors

e

h��

� d(h)e

�

; e

��m

� e

�

;

n!

X

k=1

�

k

e

k

; (1)

h 2 H; m 2M; � 2 S

n

:

These vectors span some subspace K 2

R

n!

. We denote its dimension as K.

Now we can split group algebra of S

n

into

orthogonal components in terms of the Eu-

clidean metric

R

n!

=K�Q:

It is obvious that all points of R

n!

lying

inK correspond to tensor expressions which

are equal to zero due to the S-I-D proper-

ties. Thus, any two points A and A

0

lying on

the plane parallel to K correspond to equal

expressions:

(A�A

0

)$

X

�2S

n

�

SID

�

� F

�

= 0:

The (n! � K) dimensional subspace Q

could be chosen as a set of canonical el-

ements: a point A

Q

can be determined

as a canonical representative of the S-I-D

equivalence class of A. Then one can con-

clude that the problem of comparing ten-

sor expressions may be solved by compar-

ing their canonical representatives. Such

an approach was developed in [4] where

the Gramm-Schmidt orthogonalization pro-

cedure was used as a main technical method.

However, this procedure requires too much

time and computer memory during execu-

tions.

In [8] the authors proposed an e�ective

procedure where another subspace, denoted

below as L, had been considered as a set of

canonical elements. In the next section we

give a concise formulation of this procedure.

3.2 "Triangle" S-I-D basis

Let's designate vectors (1) as

V

0

k

=

n!

X

j=1

�

0

kj

e

j

; k = (1; :::;

~

K): (2)

Then we construct new vectors by recur-

rent applying (with steps m = 1; : : : ;

~

K) of

the following transformation:

| if V

m�1

m

6= 0 then de�ne k

m

by �rst

nonzero coe�cient in V

m�1

m

and let

V

m

k

� V

m�1

k

; k = 1; : : : ; k

m

;

V

m

k

� V

m�1

k

�

m

X

i=1

�

m�1

kj

i

�

m�1

k

i

j

i

V

m�1

k

i

; k > k

m

; (3)

| if V

m�1

m

= 0 then V

m

k

� V

m�1

k

.

As a result, we have a set of nonzero vec-

tors V

(K)

k

which span the subspace K. Note

that all nonzero vectors V

(K)

k

are linearly in-

dependent. Indeed, let us reorder the unit

vectors

(e

1

; : : : ; e

n!

) �! (e

j

1

; : : : ; e

j

m

; : : :):

Then the vectors V

(K)

k

with k � k

m

will

have zero projections onto the unit vectors

e

j

i

(i < m). In other words, the set V

(K)

k

has

a "triangle" form in this reordered basis. It

is evident that a number of nonzero vectors

V

(K)

k

is equal to K - the dimension of the

S-I-D subspace K.

We have made some optimization in ad-

dition to the transformation (3):
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on each step m all already constructed

nonzero vectors V

(K)

k

i

(i < m) are improved

by the following transformation:

V

m

k

i

! V

m

k

i

�

�

m

k

i

j

m

�

m

k

m

j

m

V

m

k

m

; i < m: (4)

Such optimization doesn't spoil the "tri-

angle" structure and vectors V

k

i

with k <

k

m

will have zero projections onto the unit

vectors e

j

with j = j

1

; :::; j

m�1

. Thus, we

conclude that each vector V

(K)

k

has not more

then (n!�K) nonzero components.

3.3 Subspace of canonical ele-

ments

Let us consider an arbitrary vector, desig-

nated below as

A

0

� A =

n!

X

j=1

a

0

i

� e

j

;

and recurrently apply (m = 1; : : : ;K) the

following transformation:

A

m

� A

m�1

�

a

m�1

j

m

�

m�1

k

m

j

m

V

(K)

k

m

=

n!

X

j=1

a

m

j

e

j

: (5)

It is easy to see that this linear transfor-

mation has the following properties:

{ it shifts the vector A along the plane

parallel to K. (So A and A

K+1

corre-

spond to equal tensor expressions);

{ vector A

K+1

has zero projections onto

unit vectors e

j

with j = j

1

; : : : ; j

K

;

{ A

K+1

= 0 i� A 2 K:

Thus, we conclude that 8A 2 R

n!

:

� A

K+1

= A

0

K+1

i� (A�A

0

) 2 K;

� transformation (5) doesn't shift A

K+1

;

� image of the transformation (5) is

some linear subspace L with dimen-

sion (n!�K) and L \K = f0g

4

;

� every vector in L has not more than

(n!�K) nonzero components.

We de�ne the subspace L as a set

of canonical representatives for S-I-

D equivalence classes under consider-

ation.

4 Multiplication

If a tensor expression is obtained by the

multiplication of basic tensors then we di-

rectly generate the set of S-I-D relations as

a product of basic ones.

Then the expression is elaborated, tak-

ing into account additional relations origi-

nated from the multiplication rule (in our

case from the commutativity). Let us con-

sider a tensor tt with two indices as an ex-

ample. If we multiply it by itself, say as

tt(i; j)�tt(k; l), the additional symmetry ap-

pears:

tt(i; j) � tt(k; l) = tt(k; l) � tt(i; j):

We consider all such permutations and

add the corresponding elements to the S-I-

D relations. Then we perform the "trian-

gle" procedure (3,4) to construct the full K

subspace, and use the procedure (5) for the

canonical representative calculation

5

.

4

Here f0g means that this set has a single point

- zero vector.

5

It is clear how to generalize the algorithm to

the case of a noncommutative �nite algebra of basic

tensors. In such cases, more complicated relations

will appear instead of the simple symmetry written

above. However, in any case they will be linear

identities which can be elaborated naturally in the

framework of our approach.
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5 Some de�nitions

Let us give some de�nitions which we use in

the following.

1. K-basis is a general name for "trian-

gle" set of linear independent vectors

V

(K)

k

(k = k

1

; : : : ; k

K

).

2. K

0

-basis is theK-basis for a basic ten-

sor considered as a separate tensor ex-

pression, taking into account its sym-

metries and linear identities only.

3. K

M

-basis is the K-basis of the expres-

sion under consideration which arises

from K

0

-bases of basic tensors and re-

lations generated by their multiplica-

tion.

4. K

D

-basis is the completion of theK

M

-

basis up to the full K-basis of the

expression under consideration, tak-

ing into account relations which arise

from renamings of dummy indices.

We shall also call this basis the full

K-basis.

5. To sieve some S� I�D vector means

to do the step m of the "triangle" pro-

cedure (3).

6. To rearrange some S� I�D vector

means to do the step m of the "trian-

gle" procedure (4).

7. To sieve some vector A by a K-basis

means to apply the transformation

(5).

6 Algorithm

There are two sets of operations. One is per-

formed due to the introduction of new basic

tensors, and the result of these operations is

the construction of the new K

0

-bases. An-

other set of operations is connected with the

simpli�cation of tensor expressions itself.

The starting procedure for the construc-

tion of K

0

-bases is TSYM (section 8.4),

and the algorithm is:

1. Generate full list of S-I vectors (1):

L

S�I

= fvg.

2. Let K = K

0

where K

0

is initial basis

(may be empty).

3. If the list L

S�I

is empty then �nish.

4. Take the next vector v from L

S�I

and delete it from this list: L

S�I

!

L

S�I

=fvg.

5. Sieve the vector v through the K-

basis (transformation (3), procedure

sieve pv, section 7.7). The result is

a new vector v

0

.

6. If v

0

6= 0 then insert v

0

in the K-basis

and rearrange the basis (transforma-

tion (4), procedure insert pv, section

7.7).

7. Repeat from step 3.

All K

0

-bases are stored. There is a pos-

sibility to delete any basic tensor from the

list of tensors and so to delete its K

0

-basis

(section 8.3).

The algorithm of simpli�cation of tensor

expressions is:

1. If there is no multiplication of tensors

or there are no new S-I relations due

to their multiplication then go to step

`4'.

2. Expand the K

0

-bases involved up to

the necessary rank of the permutation

6



group corresponding to the multipli-

cation of basic tensors in the expres-

sion elaborated (procedure t upright,

section 7.5), and collect the obtained

relations as the initial K-basis of the

considered expression.

3. Complete the K-basis by additional

vectors which arise from the multi-

plication (see section 4) by the algo-

rithm of theK-basis construction (see

above). The result is theK

M

-basis for

the expression under simpli�cation.

4. Dummies. Complete the K

M

-basis

by vectors corresponding to the rela-

tions which arise from renamings of

dummy indices (if they are present).

The result is the K

D

-basis - the full

K-basis for the expression under sim-

pli�cation.

5. Sieve the tensor expression through

the K

D

-basis (transformation (5),

procedure sieve t, section 7.7). The

result is the construction of the canon-

ical representative for the expression.

Any K

M

and K

D

-bases are not stored

and are constructed each time an expression

is simpli�ed.

7 Program description

ATENSOR program consists of the follow-

ing blocks:

� interface with REDUCE system;

� generator of permutations;

� p-vector arithmetics;

� tensor arithmetics;

� generator of the multiplication rela-

tions;

� generator of the dummy relations;

� utilities to work with K-bases.

7.1 Interface with REDUCE

Interface with REDUCE is implemented by

de�ning of a domain [10]. This is a natu-

ral way to implement a new object in RE-

DUCE. We should de�ne the following set

of procedures:

Operation Internal proc. Comment

minus t minus Unary minus

plus t plus Summ

times t times Product

di�erence t di�erence Substruction

zerop t zerop Does tensor

equal zero?

prepfn t prep

prifn t pri Print function

intequiv tintequiv Is tensor equi-

valent to

integer

The following procedures must be de�ne

for completeness but can not be used as op-

erations for tensors. These procedures pro-

duce an error message if called.
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Operation Internal proc. Comment

expt t expt Power

quotient t quotient

divide t divide

gcd t gcd Great common

divider

minusp t minusp Is tensor

negative?

onep t onep Does tensor

equal 1?

i2d i2tensor Transform

integer

to tensor

We also de�ne the domain name

(TENSOR) and the tag (! :TENSOR).

To complete the interface with REDUCE,

we add the tag of the tensor domain to the

global variable DOMAINLIST !�

This method supports the input process of

tensor expressions and provides calls of the cor-

responding internal procedures automatically.

7.2 Permutations

This block implements generation of permuta-

tions of N order and includes some procedures

for working with them. All procedures work

with the packed and the unpacked form of per-

mutations.

Unpacked form of a permutation p is a list

of numbers

6

:

p = (d

1

d

2

::: d

k

); 1 � d

i

� k � 99:

Packed form is the corresponding number:

p = d

1

d

2

:::d

k

:

For example,

p = (1 2 3 4 5) and p = 12345:

The transformation of a permutation from

one form to another is made automatically.

The packed form is more economic with respect

6

see section 9 for details.

to computer memory, but requires more time to

proceed. There is the global variable !�ppacked.

If it is T (the default value) then all permuta-

tions are packed; if NIL then they are stored

in the unpacked form.

We use the well known algorithm for gener-

ation of permutations [12]. We implement the

following procedures:

� mkunitp(n) { generates the unit element

of S

n

;

� pfind(p

1

; p

2

) { returns x such that p

2

=

x � p

1

;

� prev(p) { returns reverse permutation x

such that x � p = 1;

� psign(p) { returns (�1)

k

, where k is the

number of transpositions which are nec-

essary to apply to the permutation p to

get the identical permutation.

� pmult(p

1

; p

2

) { returns the permutation

x = p

1

� p

2

;

� pappl(p; l) { returns l with the elements

permuted by p, so that l is replaced by

p(l).

There are some utilities to work with per-

mutations:

{ pupright(p; d) { extends the permutation

p 2 S

n

to the right up to the element of

S

n+d

with the identical permutation of

the extra indices (this utility is used for

the elaboration of multiplication of basic

tensors);

{ pupleft(p; d) { extends the permutation

p 2 S

n

to the left up to the element of

S

n+d

with the identical permutation of

the extra indices (this utility is used for

the elaboration of multiplication of basic

tensors);

{ pappend(p

1

; p

2

) - concatenates the per-

mutation p

1

2 S

n

1

with the permutation

p

2

2 S

n

2

. Returns the element of S

n

1

+n

2

;
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{ pkp(p) { packs the permutation p;

{ unpkp(p) { unpacks the permutation p.

7.3 P-vectors

P -vectors are one of the main objects in the

program. They represent the vector in R

n

{

the group algebra of S

n

. In the program they

are implemented as a REDUCE domain [10].

Internal structure of p-vector is:

p�vector ::= (! :pv : p�list)

p�list ::= NILj(coeff : perm) : p�list

coeff ::= integer

All the standard operations are de�ned for

p-vectors because they form a domain.

The following procedures are used for tensor

simpli�cation:

� pv sort(pv) { sorts the p-list so that all

permutation will be ordered, e.g. p

i

>

p

j

8 i < j;

� pv compress(pv) { removes all terms

with zero coe�cient;

� pv renorm(pv) { reduces the �rst coe�-

cient (in integer numbers), i.e.

pv ! pv=GCD(c

1

; c

2

; :::) where c

i

are

the coe�cients.

Some utilities are available to work with p-

vectors:

{ pappl pv(p; pv) { applies the permuta-

tion p to the p-vector pv.

Returns p

0

=

P

i

c

i

pmult(p; p

i

) where

pv =

P

i

c

i

p

i

;

{ pv applp(pv; v) { applies the p-vector pv

to the permutation p.

Returns p

0

=

P

i

c

i

pmult(p

i

; p) where

pv =

P

i

c

i

p

i

;

{ pv upright(pv; d) - expands the p-vector

pv to the right.

Returns p

0

=

P

i

c

i

pupright(p

i

; d) where

pv =

P

i

c

i

p

i

;

{ pv upleft(pv; d) - extends the p-vector pv

to the left.

Returns p

0

=

P

i

c

i

pupleft(p

i

; d) where

pv =

P

i

c

i

p

i

.

7.4 Tensors

Tensors are the main objects in the program.

They represent tensor expressions. In the pro-

gram they are implemented as a REDUCE do-

main [10].

The internal structure of a tensor is:

tensor ::= (! : tensor i�tensor

1

::: i�tensor

k

)

i�tensor ::= (t�header t�list)

t�list ::= NIL j p�list : t�list

t�header ::= (t�name i�list)

t�name ::= (t

1

t

2

::: t

k

)

i�list ::= (i

1

i

2

::: i

l

)

where t

1

; t

2

; :::; t

k

are basic tensors identi�ers,

and i

1

; i

2

; :::; i

l

are indices (identi�ers).

Let us consider an example tensor expres-

sion and its representation in the internal no-

tations.

Let tt(i; j) be a tensor of second order. The

internal representation is

(! : tensor (((tt) (i j)) (1 : 12)))

Thus, the tensor expression

tt(i; j) + tt(j; i)

will have the internal representation

(! : tensor (((tt) (i j)) (1 : 21) (1 : 12)))

The most important procedures from this

block are described bellow in section 8.

The simpli�cation of tensor expressions is

performed by the function t simp. The result

of this procedure is the canonical form of the

tensor expression, i.e. the sieved vector t

0

2 L.

7.5 Tensor multiplications

The main procedures of the tensor multiplica-

tion block are the following:

9



� t split(tt) - splits a term of the tensor

expression into the list of basic tensors

as factors;

� t fuse(tf

1

; tf

2

) - combines tensor factors

tf

1

and tf

2

into the product. This oper-

ation is reverse to the previous one;

� addmultsym(t

1

; t

2

) - adds symmetry and

multiterm linear identity relations gen-

erated by the multiplication to the K-

basis.

Some utilities are available to work with ten-

sors.

� t upright(tt; th) - extends the tensor tt

to the right with respect to the t-header

th;

� t upleft(tt; th) - extends the tensor tt to

the left with respect to the t-header th;

� t pri(tt) - outputs the tensor tt in the

natural form.

7.6 Dummy indices

Dummy relations are created in the process of

evaluation of a tensor expressions. Their num-

ber may be very large and unpredictable in ad-

vance. Therefore we do not save D-relations in

contrast to S and I ones. This leads to the loss

of time but saves the memory.

During simpli�cation of tensor expressions

we use internal names for indices. Original

names are saved and used in the I/O process.

Thus, if we have, for example, a dummy index i

(really there are two such names in the expres-

sion considered) then it will be replaced with

two internal names:

nn and mm;

where mm = nn + 1. The original name is

stored as a special property of the new ones.

The dummy block produces relations gen-

erated by renamings of dummies. The main

procedures are the following:

� adddummy(tt) - adds the new relations

to the K-basis;

� dl get(il) - returns the list of dummy in-

dices from the index list il;

� il simp(il) - replaces original names of

the dummy indices with their internal

names;

� mk dsym(t

1

) - returns the list of tensor

relations with changed dummy indices in

each pair;

� mk ddsym(t

1

) - returns the list of tensor

relations with permuted pairs of dummy

indices.

7.7 Working with K-bases

This block contains the procedures for working

with K-bases.

All K-bases for various tensor expressions

are stored as lists in the global variable

!�basis ::= (k�basis

1

k�basis

2

:::)

The structure of the basis is:

k�basis ::= (t�header) : t�list

where the header t and the list t are de�ned

above.

The main procedures are the following:

� sieve pv(pv; b) { sieves the p-vector pv

using the basis b. This procedure is

used for the construction of the K-basis

("triangle" transformation (3,4)) and for

the simpli�cation of tensors expressions

(projection to the canonical element (5)).

This is the main step of the function

sieve t.;

� reduce pv(pv; qv) - reduces the p-vector

pv with respect to the p-vector qv. This

is the main step of the function sieve pv.;

10



� insert pv(pv; b) - inserts the p-vector pv

into the basis b. This procedure also re-

arranges b with respect to pv.

� sieve t(tt) - sieves the tensor tt using the

corresponding K-basis. The �rst step of

this procedure is generation of relations

due to renamings of dummies and the

corresponding completion of K

M

up to

K

D

-basis.

7.8 Global variables

In this section we describes the main global

variables which allow a user to control the

work. We show the default values in brackets.

� !�ppacked(T ) - are permutations stored

in packed form?

� !�debug(NIL) - switches the debug out-

put on.

8 User's interface

To simplify the user interface, we restricted the

number of additional commands. The names of

these commands are very similar to the stan-

dard REDUCE ones used in similar cases.

8.1 KBASIS

The command KBASIS prints the tensor K-

basis.

The number of vectors in the basis, i.e. the

dimension of the corresponding subspace K, is

typed in the last line of the output. Format of

this command is:

KBASIS tt

1

; tt

2

; :::; tt

n

;

Here tt

1

; tt

2

; :::; tt

n

are tensor names.

To output theK-basis in the case of the mul-

tiplication of two or more tensors, it is neces-

sary to use the following format of the com-

mand:

KBASIS t

1

(t

2

; :::; t

k

); : : : ;

Here t

1

; t

2

; : : : are the names of tensor factors.

If some names have not been declared as ten-

sors the message is produced

***** basis1 *** Invalid as tensor: tt

8.2 TENSOR

The command TENSOR declares new tensors.

Format of this command is:

TENSOR t

1

; t

2

; :::; t

n

;

Here t

1

; t

2

; :::; t

n

are identi�ers. The number of

indices will be �xed during the �rst evaluation

of a tensor expressions.

If some names have been declared as tensors

already the message is produced:

+++ tt is already declared as tensor.

8.3 TCLEAR

The command TCLEAR removes tensors from

the list of tensors. Format of this command is:

TCLEAR t

1

; t

2

; :::; t

n

;

Here t

1

; t

2

; :::; t

n

are the names of tensor (iden-

ti�ers).

If some names have not been declared as ten-

sors the message is produced

+++ xxx is not a tensor.

Note: All K-bases where any of t

i

is in-

cluded as a factor will be lost.

8.4 TSY M

The command TSYM de�nes symmetry rela-

tions of basic tensors. Format of this command

is:

TSYM te

1

; te

2

; :::; te

k

;

Here te

1

; te

2

; :::; te

k

are linear combinations of

basic tensors with integer coe�cients not con-

taining without dummy indices.
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All relations correspond to the left hand

side of the symmetry equations. For example,

for antisymmetric tensor we have the relation

AA(i; j)+AA(j; i) = 0. Thus, the correspond-

ing input format is:

TSYM AA(I; J) +AA(J; I);

8.5 Algebraic operations

The standard algebraic operations are available

for tensors:

+ sum of tensors;

� di�erence of tensors or negation;

� multiplication of tensors.

We assume that two indices with identical

names means the summation over their values

(the Einstein convention) - they are dummy

ones. Thus, the multiplication of two tensors

may be either a direct product, or it can con-

tain contractions of dummy indices.

Examples:

t

1

(i; j) � t

2

(j; k);

t

1

(i; j) + 2 � t

2

(j; i);

8.6 Switch DUMMYPRI

This switch is controlled by the standard RE-

DUCE commands ON/OFF . It controls the

output process for tensor expressions. The de-

fault value is OFF .

DUMMY PRI prints dummy indices with

internal names { numbers. The general rule

is:the index (2k�1) is contracted with the index

(2k).

Examples

7

:

TENSOR GG;

GG(M;M); ) GG(M;M)

ON DUMMY PRI ;

GG(M;M); ) GG(M

41

;M

42

)

7

Here and below REDUCE output is given after

the arrow ")".

8.7 Switch SHORTEST

This switch is controlled by the standard RE-

DUCE commands ON/OFF . It controls the

output process for tensor expressions. The de-

fault value is OFF .

SHORTEST prints tensor expression in

shortest form that was produced during eval-

uation. Hoever, the sortest form may be non-

canonical.

TENSOR C;

TSYM C(K;L;M) + C(L;M;K) +

C(M;K;L);

C(K;L;M)+ C(M;L;K);

) (�1) � C(L;M;K) + (�1) �

C(M;K;L)+ C(M;L;K)

ON SHORTEST ;

C(K;L;M)+ C(M;L;K);

) C(K;L;M)+ C(M;L;K)

9 Memory usage

Let us consider simpli�cation of a tensor ex-

pressions with n indices. The rank of the cor-

responding permutation group is n and the

dimension of its group algebra is n!. Let

us consider two cases: when there are many

S� I�D relations (so that the dimension of

theK subspace is almost equal to n!) and when

there are small number of S� I�D relations

(so that the dimension of the K subspace is

small).

In the �rst case, about n! � l � k Lisp cells

are necessary to store the full K

D

-basis. Here

l is the number of cells needed to store a single

term of a p-vector, and k is the average number

of terms in vectors from this K

D

-basis. The

number of terms in these vectors (k) is about

2�3 in practical cases. The number of terms in

the simpli�ed expression is (in practical cases)

O(1), and can be omitted from this estimate.

In the case of a small set of symmetries and

linear identities of basic tensors, the number of

vectors in the full K

D

-basis is small enough,

and can be omitted from this estimate. How-
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ever, the number of terms in a canonical rep-

resentative (the expression after simpli�cation)

will be about n!.

Anyway, we have to work with a practi-

cally full set of permutations, which contains

n! members.

Thus, the minimum computer memory nec-

essary to store the elaborated expressions is not

less then n! � l � k. The typical number of Lisp

cells necessary to store a single term of a tensor

expressions (basic tensor) is 4. The length of

each cell is 8 Byte. The results of calculation

for di�erent ranks of the permutation group are

collected in the table.

Rank of S

n

Number of

Mcells

Memory in

Mbyte

9 2.9 22.6

10 29.0 226.8

11 319.3 2494.8

2{3 times more memory is necessary in the

intermediate steps of calculations. Modern

computers usually equipped with up to 512

Mbyte memory can elaborate tensor expres-

sions with not more then 10 indices with the

help of the proposed algorithm. However, hard-

ware development is very fast now, and it will

be possible to solve problems with 11 indices

with the help of our program. Finally, we note

that it possible to modify the algorithm so that

the memory limitations would be not so hard.

However, this advantage is compensated by a

signi�cant increase of the execution time. To

summarize this section, we conclude that the

absolute limit for the group algebra approach

developed in this work is 12 indices.

10 Examples

10.1 Symmetric and antisym-

metric tensors

At the beginning, let us declare the names of

basic tensors:

tensor s2; a3; v1; v2; v3;

By using TSYM commandwe introduce the

S-I relations of the basic tensors:

tsym s2(i; j)� s2(j; i); % Symmetric

a3(i; j; k)+ a3(j; i; k); % Antisymm.

a3(i; j; k)� a3(j; k; i);

Let us output the K

0

-bases constructed for

the tensors a

2

and s

2

kbasis s2; a3;

) s2(j; i) + (�1) � s2(i; j)

) 1

) a3(k; i; j)+ a3(j; i; k)

) a3(k; j; i)+ (�1) � a3(j; i; k)

) a3(i; k; j)+ (�1) � a3(j; i; k)

) a3(i; j; k)+ a3(j; i; k)

) a3(j; k; i)+ a3(j; i; k)

) 5

Now we are ready to simplify tensor expres-

sions. Some examples are:

s2(i; j)+ s2(j; i); ) 2 � s2(i; j)

a3(i; j; k) � s2(i; j); ) 0

a3(i; j; k) � v1(i) � v2(j) � v1(k); ) 0

Sometimes one can get a 'strange' output

if one will not be careful with the input. For

example,

x := s2(i; i); ) x := s2(i; i)

x � v1(i); ) s2(i; i) � v1(i)

From the standard point of view, the second

output is incorrect due to the fact that three

indices with the same name are present. How-

ever, the input has not been recognized as an

error. If one switches on the 
ag

on dummypri;

and then repeats the previous input then one

gets the following output:

x � v1(i); ) s2(i

23

; i

24

) � v1(i)

Hence, the �rst two i's are dummies and the

last one is a free index.

If a user would like to output the K-basis of

the product of the tensors s

2

and a

3

, the fol-

13



lowing format of the command KBASIS has

to be used:

kbasis s2(a3);

) a3(j; i; k) � s2(i; j) + a3(k; i; j) � s2(j; i)

) a3(j; i; k) � s2(j; i) + a3(k; i; j) � s2(j; i)

.....

) 110

10.2 Riemann tensor

Let us introduce the Riemann tensor and the

standard set of its S-I relations:

tensor ri;

tsym ri(i; j; k; l)+ ri(j; i; k; l);

tsym ri(i; j; k; l)+ ri(i; j; l; k);

tsym ri(i; j; k; l)+ ri(i; k; l; j)+ ri(i; l; j; k);

The K

0

-basis consists of 22 vectors (see

TEST RUN OUTPUT) and the full vector

space has 4! = 24 dimensions. Thus, any ex-

pressions which are linear combinations of Rie-

mann tensors with permuted indices can be

simpli�ed to expressions containing only two

basic tensors

8

.

This set of properties leads us to the very

important symmetry property of Riemann ten-

sor with respect to the exchange of pairs of in-

dices:

ri(i; j; k; l)� ri(k; l; i; j); ) 0

Let us consider some more examples,

ri(m;n;m; n)� ri(m;n; n;m)

) 2 � ri(m;n;m; n).

Any tensors expressions consists of Rieman

tensors may be expressed through summ of 2

ones:

ri(i; j; k; l) + ri(j; k; l; i) + ri(k; l; i; j) +

ri(l; i; j; k);

) (�2) � ri(l; j; i; k)+ 4 � ri(l; i; j; k)

A more complicated example with multipli-

cation of the Riemann tensor and the antisym-

8

This simpli�cation has no relation to the num-

ber of independent components of the Riemann cur-

vature tensor in space-time of various dimensions

metric tensor a2 is given in the section TEST

RUN OUTPUT.
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TEST RUN OUTPUT

%*********************************************************************

% ATENSOR TEST RUN.

%

% V.A.Ilyin & A.P.Kryukov

% E-mail: ilyin@theory.npi.msu.su

% kryukov@theory.npi.msu.su

%

% Nucl. Phys. Inst., Moscow State Univ.

% 119899 Moscow, RUSSIA

%*********************************************************************

% First of all we have to load the ATENSOR program using the one of the

% following command:

% 1) in "atensor.red"$ % If we load source code

% 2) load atensor$ % If we load binary (compiled) code.

load atensor;

(atensor)

% To control of total execution time clear timer:

showtime;

Time: 0 ms

% Switch on the switch TIME to control of executing time

% for each statement.

%on time$

% Let us introduce the antisymmetric tensor of the second order.

tensor a2;

% The antisymmetric property can be expressed as:

tsym a2(i,j)+a2(j,i);

% The K-basis that span K subspace is:

kbasis a2;

a2(i,j) + a2(j,i)

1

% Let us input very simple example:

a2(k,k);

0
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% By the way the next two expressions looks like different ones:

a2(i,j);

a2(i,j)

a2(j,i);

a2(j,i)

% But the difference of them has a correct value:

a2(j,i)-a2(i,j);

2*a2(j,i)

% Next examples. For this purpose we introduce 3 abstract

% vectors - v1,v2,v3:

tensor v1,v2,v3;

% The following expression equal zero:

a2(i,j)*v1(i)*v1(j);

0

% It is interest that the result is consequence of the equivalence

% of the name of tensors.

% While the next one - not:

a2(i,j)*v1(i)*v2(j);

a2(i,j)*v1(i)*v2(j)

% Well. Let us introduce the symmetric tensor of the second order.

tensor s2;

tsym s2(i,j)-s2(j,i);

% Their K-basis look like for a2 excepted sign:

kbasis s2;

s2(j,i) + (-1)*s2(i,j)

1

% Of course the contraction symmetric and antisymmetric tensors

% equal zero:
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a2(i,j)*s2(i,j);

0

% By the way, the next example not so trivial for computer...

a2(i,j)*a2(j,k)*a2(k,i);

0

% Much more interesting examples we can demonstrate with the

% the tensor higher order. For example full antisymmetric tensor

% of the third order:

tensor a3;

% The antisymmetric property we can introduce through the

% permutation of the two first indices:

tsym a3(i,j,k)+a3(j,i,k);

% And the cyclic permutation all of them:

tsym a3(i,j,k)-a3(j,k,i);

% The K basis of a3 consist of 5 vectors:

kbasis a3;

a3(k,i,j) + a3(j,i,k)

a3(k,j,i) + (-1)*a3(j,i,k)

a3(i,k,j) + (-1)*a3(j,i,k)

a3(i,j,k) + a3(j,i,k)

a3(j,k,i) + a3(j,i,k)

5

% In the beginning some very simple examples:

a3(i,k,i);

0

a3(i,j,k)*s2(i,j);

0

% The full symmetric tensor of the third order may be introduce

% by the similar way:

tensor s3;

tsym s3(i,j,k)-s3(j,i,k);

18



tsym s3(i,j,k)-s3(j,k,i);

kbasis s3;

s3(k,j,i) + (-1)*s3(i,j,k)

s3(k,i,j) + (-1)*s3(i,j,k)

s3(j,k,i) + (-1)*s3(i,j,k)

s3(j,i,k) + (-1)*s3(i,j,k)

s3(i,k,j) + (-1)*s3(i,j,k)

5

% The next examples demonstrate some calculation with them:

s3(i,j,k)-s3(i,k,j);

0

s3(i,j,k)*a2(i,j);

0

a3(i,j,k)*s2(i,j);

0

s3(i,j,k)*a3(i,j,k);

0

% Now we consider very important physical case - Rieman tensor:

tensor ri;

% It has the antisymmetric property with respect to the permutation

% of the first two indices:

tsym ri(i,j,k,l) + ri(j,i,k,l);

% It has the antisymmetric property with respect to the permutation

% of the second two indices:

tsym ri(i,j,k,l) + ri(i,j,l,k);

% And the triple term identity with cyclic permutation the

% third of them:

tsym ri(i,j,k,l) + ri(i,k,l,j) + ri(i,l,j,k);

% The corresponding K basis consist of 22(!) vectors:

kbasis ri;

19



ri(l,k,i,j) + (-1)*ri(j,i,k,l)

ri(l,k,j,i) + ri(j,i,k,l)

ri(l,i,k,j) + (-1)*ri(j,k,i,l)

ri(l,i,j,k) + ri(j,k,i,l)

ri(l,j,k,i) + (-1)*ri(j,k,i,l) + ri(j,i,k,l)

ri(l,j,i,k) + ri(j,k,i,l) + (-1)*ri(j,i,k,l)

ri(k,l,i,j) + ri(j,i,k,l)

ri(k,l,j,i) + (-1)*ri(j,i,k,l)

ri(k,i,l,j) + (-1)*ri(j,k,i,l) + ri(j,i,k,l)

ri(k,i,j,l) + ri(j,k,i,l) + (-1)*ri(j,i,k,l)

ri(k,j,l,i) + (-1)*ri(j,k,i,l)

ri(k,j,i,l) + ri(j,k,i,l)

ri(i,l,k,j) + ri(j,k,i,l)

ri(i,l,j,k) + (-1)*ri(j,k,i,l)

ri(i,k,l,j) + ri(j,k,i,l) + (-1)*ri(j,i,k,l)

ri(i,k,j,l) + (-1)*ri(j,k,i,l) + ri(j,i,k,l)

ri(i,j,l,k) + (-1)*ri(j,i,k,l)

ri(i,j,k,l) + ri(j,i,k,l)

ri(j,l,k,i) + ri(j,k,i,l) + (-1)*ri(j,i,k,l)

ri(j,l,i,k) + (-1)*ri(j,k,i,l) + ri(j,i,k,l)

ri(j,k,l,i) + ri(j,k,i,l)

ri(j,i,l,k) + ri(j,i,k,l)

22

% So we get the answer for any expressions with 3 and more terms of

% Rieman tensors with not more then 2 terms. For example:

ri(i,j,k,l)+ri(j,k,l,i)+ri(k,l,i,j)+ri(l,i,j,k);

(-2)*ri(l,j,i,k) + 4*ri(l,i,j,k)

% This three identities leads us to very important symmetry property with

% respect to exchange of pairs indices:

ri(i,j,k,l)-ri(k,l,i,j);

0

% Let us start with simple example:

ri(m,n,m,n)-ri(m,n,n,m);

2*ri(m,n,m,n)

% Much more complicated example is:

a2(m,n)*ri(m,n,c,d) + a2(k,l)*ri(c,d,l,k);

0
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% The answer is trivial but not so simple to obtain one.

% The dimension of the full space is 6! = 720.

% The K basis consists of 690 vectors (to reduce output we

% commented the last statement):

%kbasis ri(a2);

% One else nontrivial examples with Riemann tensors:

(ri(i,j,k,l)-ri(i,k,j,l))*a2(i,j);

a2(i,j)*ri(i,j,k,l)

---------------------

2

%***************** END OF TEST RUN ************************

% The total execution time is:

showtime;

Time: 196940 ms plus GC time: 10670 ms

$

END$
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