
Typesetting REDUCE output with TEX

— A REDUCE-TEX-Interface —

Werner Antweiler

Andreas Strotmann

Volker Winkelmann

University of Cologne Computer Center, West Germany1

January 12, 2025

Abstract: REDUCE is a well known computer algebra system invented by Anthony

C. Hearn. Although a pretty-printer is already incorporated in REDUCE, the output is
produced only in line-printer quality. The simple idea to produce high quality output

from REDUCE is to link REDUCE with Donald E. Knuth’s famous TEX typesetting

language. This draft reviews our efforts in this direction. We introduce a program written
in REDUCE-Lisp which is able to typeset REDUCE formulas using TEX. Our REDUCE-

TEX-Interface incorporates three levels of TEX output: without line breaking, with line

breaking, and with line breaking plus indentation. This paper deals with some of the ideas
we have put into LISP-code and it summarizes some of our experiments we have made

with it yet. Furthermore, we compile a small user’s manual introducing to the use of our

REDUCE-TEX-Interface.

Keywords: Line-Breaking Algorithm, LISP, Prefix-to-Infix Conversion, REDUCE, TEX,

Typesetting

1 Introduction

REDUCE is a well known computer algebra system invented by Anthony C. Hearn.
While every effort was made to improve the system’s algebraic capabilities, the read-
ability of the output remained poor by modern typesetting standards. Although a
pretty-printer is already incorporated in REDUCE, the output is produced only in line-
printer quality. The simple idea to produce high quality output from REDUCE is to
link REDUCE with Donald E. Knuth’s famous TEX typesetting language. This draft re-
views our efforts in this direction. We introduce a program written in REDUCE-Lisp to
typeset REDUCE formulas with TEX. Our REDUCE-TEX-Interface incorporates three
levels of TEX output: without line breaking, with line breaking, and with line breaking
plus indentation. While speed without line breaking is comparable to that achieved

1 The authors are with: Rechenzentrum der Universität zu Köln (University of Cologne Computer
Center), Abt. Anwendungssoftware (Application Software Department), Robert-Koch-Straße 10,

5000 Köln 41, West Germany.

— 2 —

with REDUCE’s pretty-printer, line breaking consumes much more CPU time. Never-
theless, we reckon with a cost increase due to line breaking which is almost linear in
the length of the expression to be broken. This paper deals with some of the ideas and
algorithms we have programmed and it summarizes some of the experiments we have
made with our program. Furthermore, at the end of this paper we provide a small user’s
manual which gives a short introduction to the use of our REDUCE-TEX-Interface. For
simplicity’s sake the name “REDUCE-TEX-Interface” will be abbreviated to “TRI” in
this paper.2 At this point we should mention major goals we pursue with TRI:
• We want to produce REDUCE-output in typesetting quality.
• The intermediate files (TEX-input files) should be easy to edit. The reason is that it

is likely that the proposed line-breaks are sub-optimal from the user’s point of view.
• We apply a TEX-like algorithm which “optimizes” the line-breaking over the whole

expression. This differs fundamentally from the standard left-to-right, one-line look-
ahead pretty-printers of REDUCE, LISP and the like.

2 From REDUCE to TEX: concepts

REDUCE uses the function varpri to decide how to output a REDUCE expression.
The function gets three arguments: the expression to be printed, a list of variables to
each of which the expression to be printed gets assigned, and a flag which determines if
the expression to be printed is the first, last or only expression in the line. varpri may
be called consecutively for preparing a line for output. So, our task is to assemble all
expressions before finally printing them. When !*TeX is true, varpri redirects output
to our function TeXvarpri, which receives a REDUCE expression, translates it into
TEX and pushes it onto a variable called TeXStack* before eventually printing it once
the line is completed.

The TeXvarpri function first calls a function named makeprefix. Its job is
to change a REDUCE algebraic expression to a standard prefix list while retain-
ing the tree structure of the whole expression. Generally, this is done using a call
prepsq*(simp(expression)), but lists and matrices need some special treatment. Af-
ter this has been done the new intermediate expression is passed to the most important
module of the TRI: the mktag/makefunc-family.3 These functions recursively expand
the structured list (or operator tree) into a flat list, translating each REDUCE symbol
or expression into so-called TEX-items on passing by. For that reason, this list is called
the TEX-item list. If the simple TEX-mode (without line breaking) was chosen this list
is then printed immediately without further considerations. Translation and printing
this way is almost as fast as with the standard REDUCE pretty printer.

When line-breaking has been enabled things get a bit more complicated. The greatest
effort with TRI was to implement the line-breaking algorithm. More than half of the
entire TRI code deals with this task. The ultimate goal is to add some “break items”, i.e.
\nl-TEX-commands4, marking — in a certain way — optimal line-breaks. Additionally,
these break items can be followed immediately by “indentation items”, i.e. \OFF{...}

TEX-commands5, specifying the amount of indentation applicable for the next new line.

2 The reason why it was called TRI and not RTI is simply due to the fact that TRI corresponds better

to the three-level (“tri-level”) mode.
3 The whole family currently has five members. The “parents” are the mktag and makefunc functions

which do the most burdensome job. The “children” are makearg, makemat and makeDF which

handle special cases such as list construnction or differentiation operators. We do not review the
minor functions since they are easily understandable.

4 This is not a TEX-primitive but a TRI-specific TEX-macro command which expands into a lot of
stuff.

5 see previous footnote

— 3 —

The problem is to choose the right points where to insert these special TEX-items.
Therefore, the TEX-item list undergoes three further transformation steps.

First, the TEX-item list gets enlarged by so-called “glue items”. Glue items are two-
element lists, where the first element is a width info and the second element is a penalty
info. The “penalty” is a value in the range −10000 . . . + 10000 indicating a mark-up
on a potential break-point, thus determining if this point is a fairly good (if negative)
or bad (if positive) choice. The amount of penalty depends (a) on the kind of TEX-
items surrounding the glue item, (b) on the bracket nesting, and finally (c) on special
characteristics.6 The function handling this job is named insertglue which implicitly
calls the function interglue. The latter determines the glue item to insert between a
left and a right TEX-item.

During the second level, the TEX-item list becomes transformed into a so-called
breaklist consisting of active and passive nodes. A passive node is simply a width info
giving the total width of TEX-items not interspersed by glue items. On the other hand,
active nodes are glue items enlarged by a third element, the offset info, indicating an
indentation level which is used later for computing the actual amount of indentation.
Active nodes are used as potential breakpoints. Moreover, while creating the breaklist,
the TEX-item list will be modified if necessary according to the length of fractions and
square roots which cannot be broken if retained in their “classical” form. Hence fractions
look like (...)/(...) if they don’t fit into a single line, especially in the case of large
polynomial fractions. The major function for this job is named breaklist which calls
resolve if necessary.

The third and most important level is the line-breaking algorithm itself. This al-
gorithm embedded in the function trybreak will be described below. The idea how
to break lines is based on the article by Knuth/Plass(1981). Line-breaking can occur
at active nodes only. So, you can loop through the breaklist considering all potential
break-points. But in order to find a suitable way in a reasonable amount of time you
have to limit the number of potential breakpoints considered. This is performed by
associating a “badness” with each potential breakpoint, describing how good looking or
bad looking a line turns out. If the badness is less than a given amount of “tolerance”
— as set by the user — then an active node is considered to be feasible and becomes
a delta node. A delta node is simply an active node enlarged by four further infos:
an identification number for this node, a pointer to the best feasible break-point (i.e.
delta-node) to come from7 the total amount of demerits (i.e. a compound value derived
from badness and penalty) accumulated so far, and a value indicating the amount of
indentation applied to a new line beginning at this node. When trybreak has stepped
through the list, the breakpoints will have been determined. Afterwards all glue items
(i.e. active nodes) are deleted from the TEX-item list while break- and indentation-items
for those nodes marked as break-points are inserted.

Finally the TEX-item list is printed with regular ASCII-characters. We didn’t put
much emphasis on the question on how to format the intermediate output since it will
be input directly into TEX. The best way to characterize the routine texout is to call it
quick and dirty. The readabiltiy of the output is low, but it may be quite good enough
for users to do some final editing work. Nevertheless, texout keeps the nesting structure
of the term visible when printed, so it will be easy to distinguish between parenthesis
levels simply by considering the amount of indentation.

6 For example, the plus- and the difference operator have special impact on the amount of penalty.
7 If one were to break the formula at this delta-node, the best place to start this line is given by this

pointer.

— 4 —

3 Creating a TEX-item list

The first TEX-specific step in preparing a typesettable equivalent of a REDUCE expres-
sion is to expand the operator tree generated by REDUCE into a so-called TEX-item list.
The operator tree is preprocessed by makeprefix in order to receive an operator tree
in standard prefix notation. A TEX-item is either a character (letter or digit or special
character) or a TEX-primitive or -macro (i.e. a LISP symbol), with properties ’CLASS,
’TEXTAG, ’TEXNAME and (only if the item represents an operator) ’TEXPREC, ’TEXPATT
and ’TEXUBY bound to them, depending on what kind of TEX-item it actually is. The
latter three properties are used for operators only. ’TEXPREC is the precedence of the
operator, a number between 0 and 999. Here the value itself is less important than the
position with respect to other operators’ precedences. The remaining properties will be
described later.

First let’s have a look at how a REDUCE expression arriving at TRI’s main entry
— the function TeXvarpri — is transformed through several levels of TRI-processing.
For instance, let us consider the expression (x− y)12, which expands into a polynomial
x12 − 12 · x11 · y + · · · − 12 · x · y11 + y12 when evaluated. REDUCE uses a special
form to store an expression. This form is called “standard quotient” because it in fact
represents a quotient of two polynomials. The contents of the following figure 1 shows
the “standard quotient” form of our example.

(*SQ ((((X . 12) . 1)

((X . 11) ((Y . 1) . -12))

((X . 10) ((Y . 2) . 66))

((X . 9) ((Y . 3) . -220))

((X . 8) ((Y . 4) . 495))

((X . 7) ((Y . 5) . -792))

((X . 6) ((Y . 6) . 924))

((X . 5) ((Y . 7) . -792))

((X . 4) ((Y . 8) . 495))

((X . 3) ((Y . 9) . -220))

((X . 2) ((Y . 10) . 66))

((X . 1) ((Y . 11) . -12))

((Y . 12) . 1)

) . 1) T)

Fig. 1: Standard Quotient Notation. This form is the way REDUCE represents terms.

The term has been indented by hand to retain the structure of this expression. Actually
the denominator is 1 as you easily find out from the last line.8 Obviously the standard-
quotient form is a bit complicated for further manipulations. It can be changed to a
real prefix notation as displayed in figure 2. Here, too, the term was edited by hand to
make it a bit more readable and comparable to the other forms.9 Note that PLUS is not
a binary but a n-ary operator, i.e. it takes an arbitrary number of arguments, while
MINUS is always a unary operator.10 This causes a bit of trouble because real binary
operators are much easier to handle. To tackle this problem we have introduced the
’TEXUBY property, which is used to change a unary into a binary form if possible.

8 The “T” in the last line is an “already-simplified”-flag indicating that the term doesn’t need to

undergo any more processing.
9 “Edit” only means we have provided some additional indentation. We have changed neither the

expression nor its structure.
10 The same problem arises with the RECIP-operator which is the unary form of the binary

QUOTIENT-operator.

— 5 —

(PLUS (EXPT X 12)

(MINUS (TIMES 12 (EXPT X 11) Y))

(TIMES 66 (EXPT X 10) (EXPT Y 2))

(MINUS (TIMES 220 (EXPT X 9) (EXPT Y 3)))

(TIMES 495 (EXPT X 8) (EXPT Y 4))

(MINUS (TIMES 792 (EXPT X 7) (EXPT Y 5)))

(TIMES 924 (EXPT X 6) (EXPT Y 6))

(MINUS (TIMES 792 (EXPT X 5) (EXPT Y 7)))

(TIMES 495 (EXPT X 4) (EXPT Y 8))

(MINUS (TIMES 220 (EXPT X 3) (EXPT Y 9)))

(TIMES 66 (EXPT X 2) (EXPT Y 10))

(MINUS (TIMES 12 X (EXPT Y 11)))

(EXPT Y 12))

Fig. 2: Prefix Notation. This list represents the state after application of makeprefix

A REDUCE expression is expanded using the two functions mktag and makefunc.
Function mktag identifies the operator and is able to put some brackets around the
expression if necessary. makefunc is a pattern oriented “unification”11 function, which
matches arguments of a REDUCE expression in order of appearance with so-called “uni-
fication tags”, as explained below. Thus, mktag and makefunc are mutually dependent
and highly recursive functions.

A “unification tag list” is a list (or a pattern, if you like) which consists of single
“unfication tags”. Each REDUCE operator is associated with a unification pattern.
While expanding the expression, each tag is replaced by the appropiate TEX-item or
partial TEX-item list created subsequently. A tag is defined as either an atom declared
as a TEX-item or one of the following:

(F) insert operator
(X) insert non-associative argument
(Y) insert a left- or right-associative argument
(Z) insert superscript/subscript argument
(R) use tail recursion to unify remaining arguments (necessary with oper-

ators having more than two arguments, e.g. the plus operator; asso-
ciativity depends on previous (X) or (Y) tag)

(L hs) insert a list of arguments (eat up all arguments on passing by); put
hs as a horizontal separator between the arguments (e.g., a separator
could be a comma for simple argument lists.)

(M vs hs) insert a matrix (and eat up all arguments on passing by); put vs as a
vertical separator and hs as a horizontal separator between the rows
and columns

(APPLY fun) apply function fun to remaining argument list

These “tags” are assembled to a tag-list or pattern, respectively. For each functor (i.e.
the head of a prefix list, e.g. PLUS, MINUS or SQRT) such a list is bound to its property
’TEXPATT. For instance, the functor PLUS has got the pattern ((X) (F) (R)) bound
to it, and the functor EXPT possesses the pattern ((X) ^{ (Z) }). The following two
boxes with pseudo-code (figures 3 and 4) survey the two major functions performing
the expansion of a prefix REDUCE-expression into a TeX-item list.

At this point, the way we use our LISP pseudo-code should be explained. Words
typeset in boldface are reserved words, e.g. begin and end. We use a PASCAL-like
syntax which is actually used by REDUCE-Lisp, too, but with a few differences: we use

11 in the terminology of the programming language Prolog

— 6 —

function mktag (tag ,outer-precedence ,associative);
begin

if 〈 tag is empty 〉 then return nil
else if 〈 tag is an atom 〉 then return 〈 get the TEX-item fortag 〉
else begin { the tag is a list }

precedence←〈 precedence of this tag or 999 〉
{ now expand the expression, the first element is the }
{ functor, the following elements are the arguments }
term←makefunc(car tag ,cdr tag ,precedence);
{ check for parentheses: term is surrounded by parentheses in order }
{ to prevent it from overruling by precedence }
if (associative and (precedence = outer-precedence))

or (precedence < outer-precedence)
then term←〈 put a pair of brackets around term 〉;
return term

end
end;

Fig. 3: The function mktag. This function deals with the transformation from prefix notation to

TEX notation. One important task of it is to decide whether or not brackets should be placed around
the term.

the word function to indicate that a value is returned12, and we use return to return
the value of the function and therefore to exit the function. This is in contrast to the use
of return in REDUCE-Lisp, where return is used only to return the value of a begin-
end-block. Identifiers are printed in italics. Where identifiers are used as logical values,
e.g. in conditions, they are either false if their value is nil or true otherwise, regardless of
their exact value. Pseudo-operations are printed in roman and are put in angle brackets.
Comments, too, are printed in roman but they are put in curly brackets. Assignments
are typeset by the assignment operator ←, thus indicating the direction of assignment.
Semicolons are used (as in PASCAL and REDUCE) as separators. In order to improve
readability, mathematical expressions are given in mathematical form instead of real
code. Finally, the operator ::= is used to identify a pseudo-code-operation with its real
code. We do not provide proper data type declarations for variables since this seems to
be superfluous in LISP where you only deal with atoms and lists.

You can bind a TEX-item to any REDUCE atom (except the operators) you like. This
is supported by binding the TEX-item to the specific atom by its property ’TEXNAME.
You can choose to have some default ’TEXNAME properties for your variables. Function
makeset defines a set of such default names. At the moment, two sets are provided for
greek and for lowercase letters. Refer to the User’s Guide for how you can use them.

But now turn back to the state of modifications our example term has undergone.
With our set of functions we have expanded the prefix form into a TEX-item list consist-
ing of single TEX-items such as numbers, letters, TEX-macros, TEX-primitives and other
TEX symbols. The result is shown in figure 5. The \cdot command is the multiplication
sign, whereas ^{ indicates the beginning of a superscript. (The term has been edited
by hand to provide for proper indentation.)

The last box in this chapter (i.e. figure 6) is a verbatim copy of the output from
TRI for our example. Because our example will be used to demonstrate line-breaking,
too, some additional commands appear which won’t occur in normal TEX-mode. These

12 REDUCE-Lisp uses the phrase “symbolic procedure” here.

— 7 —

function makefunc(functor ,argument-list ,precedence);
begin

term←nil;
pattern←〈 pattern of this functor or default pattern 〉;
while pattern do { as long as pattern isn’t empty }
begin

tag←car pattern ;
pattern←cdr pattern ;
if 〈 tag is an atom 〉 then aux←nil
else if 〈 tag is (F) 〉 then aux←〈 get the TEX-item forfunctor 〉
else if 〈 argument-list is empty 〉 then aux←nil
else if 〈 tag is (X) 〉 then
begin

aux←mktag (car argument-list ,precedence ,nil);
argument-list←cdr argument-list

end
else if 〈 tag is (Y) 〉 then
begin

aux←mktag (car argument-list ,precedence ,T);
argument-list←cdr argument-list

end
else if 〈 tag is (R) 〉 then { tail recursive pattern }

if cdr argument-list { more than one argument remaining? }
then begin

pattern←〈 pattern for functor 〉;
argument-list←nil

end
else begin

aux←mktag (car argument-list ,precedence ,nil);
argument-list←cdr argument-list

end
else if 〈 tag is (L hs), (M vs hs) or (APPLY xxx) 〉 then
begin

aux←〈 result from call to a special routine 〉;
argument-list←nil

end
else aux←nil;
if aux then 〈 concatenate it to the end of term 〉

end;
return term

end;

Fig. 4: The function makefunc. As well as the function mktag this function performs the prefix-to-

TEX notation. Its major task is to “unify” operators and their arguments with predefined patterns in
order to build up lists of TEX-items.

additional commands you find at the beginning and ending of the output and as \nl-
commands within the output. Nevertheless, the structure of the output would be much
the same with our normal TEX-mode.

The actual printing of TRI output in this example is easily readable since the expres-

— 8 —

(x ^{ 1 2 }

- 1 2 \cdot x ^{ 1 1 } \cdot y

+ 6 6 \cdot x ^{ 1 0 } \cdot y ^{ 2 }

- 2 2 0 \cdot x ^{ 9 } \cdot y ^{ 3 }

+ 4 9 5 \cdot x ^{ 8 } \cdot y ^{ 4 }

- 7 9 2 \cdot x ^{ 7 } \cdot y ^{ 5 }

+ 9 2 4 \cdot x ^{ 6 } \cdot y ^{ 6 }

- 7 9 2 \cdot x ^{ 5 } \cdot y ^{ 7 }

+ 4 9 5 \cdot x ^{ 4 } \cdot y ^{ 8 }

- 2 2 0 \cdot x ^{ 3 } \cdot y ^{ 9 }

+ 6 6 \cdot x ^{ 2 } \cdot y ^{ 1 0 }

- 1 2 \cdot x \cdot y ^{ 1 1 }

+ y ^{ 1 2 })

Fig. 5: A TEX-item list. A TEX-item is either a letter, a digit or another plain character, or it is
a TEX-command. Every TEX-item belongs to one out of eight TEX-item-classes.

$$\displaylines{\qdd

x^{12}

-12\cdot x^{11}\cdot y

+66\cdot x^{10}\cdot y^{2}

-220\cdot x^{9}\cdot y^{3}

+495\cdot x^{8}\cdot y^{4}

-792\cdot x^{7}\cdot y^{5}\nl

+924\cdot x^{6}\cdot y^{6}

-792\cdot x^{5}\cdot y^{7}

+495\cdot x^{4}\cdot y^{8}

-220\cdot x^{3}\cdot y^{9}

+66\cdot x^{2}\cdot y^{10}

-12\cdot x\cdot y^{11}

+y^{12}

\Nl}$$

Fig. 6: Output produced by the TRI. This TEX-code has to be postprocessed by TEX. This

example includes commands for line-breaking as produced with the second level of TRI.

sion is not deeply nested. Complications arise if expressions to be printed are deeply
nested, use many subscripts and superscripts, have fractions and large operators and the
like. Then output structure is worsened, especially if the whole expression extends over
several lines. We provide a “cheap” way of indentation to retain some of the structure,
but our solution is far from perfect. As the need for post-TRI-editing rises the output
from TRI should be made better. However, our quick-and-dirty solution should suffice.

4 Breaking REDUCE expressions into lines

As mentioned earlier, there are a few properties bound to each TEX-item, two of them
dealing with line-breaking. The following list gives you a survey of these two properties
and the values they can take:

’CLASS one of the following class specifiers
’ORD ordinary symbols
’LOP large operators, such as integrals
’BIN binary operators
’REL relational operators
’OPN opening symbols (left parentheses)
’CLO closing symbols (right parentheses)

— 9 —

’PCT punctuation symbols
’INN inner TEX group delimiters

’TEXTAG this is either an atom describing an ’INN class or a list of widths defining
the width of a TEX-item, where succeeding elements of the list will be used
depending on the TEX inner group level (i.e. the nesting of subscripts or
superscripts)

Glue items are to be inserted between consecutive TEX-items (similar to what TEX does
with its items). The following table specifies for each left and right class of a TEX-item
the corresponding glue measure. The glue item values have following meanings: 0 = no
space, 1 = thin space, 2 = medium space, and 3 = thick space. An asterisk means that
this case never arises, and values put in brackets indicate no space in the case of sub-
or superscripts.

Left Right Class
Class ORD LOP BIN REL OPN CLO PCT INN

ORD 0 1 (2) (3) 0 0 0 0

LOP 1 1 * (3) 0 0 0 (1)

BIN (2) (2) * * (2) * * (2)

REL (3) (3) * 0 (3) 0 0 (3)

OPN 0 0 * 0 0 0 0 0

CLO 0 1 (2) (3) 0 0 0 0

PCT (1) (1) * (1) (1) (1) (1) (1)

INN 0 1 (2) (3) (1) 0 (1) 0

Actually, a glue item is a list consisting of two elements — a width info characterizing
the width of this item (in scaled points) and a “penalty” to be used if a line should be
broken at this point. The algorithm for inserting glue items is easily described: for every
consecutive pair of TEX-items, get their classes and create a glue item according to the
value found in the glue item table. For some special TEX-items use special penalties
instead of the default values. That’s all.

Let us return to our example from the last chapter. When the functions insertglue
and interglue have finished, the TEX-item list will be left (temporarily) extended with
glue items. You can find them as the two-element lists in the example. All glue items
there have (by chance) the same width 163840. But they have different penalties 0,
50 and -390. The latter therefore indicates a very good breaking point because it is a
negative penalty, i.e. a bonus. See the following figure 7 for the changes made to the
TEX-item list.

Setting break points requires the creation of a “breaklist”. A breaklist is a sequence
of passive and active nodes, where each active node is followed by a passive node and
vice versa. Active nodes represent glue items. Passive nodes are integer atoms which
represent the width of a sequence of ordinary TEX-items which must not be interspersed
with glue items. Each breaklist consists of (at least one) passive nodes surrounded by
delta nodes representing the beginning and ending of the list.

breaklist ::= (delta-node inner-list delta-node)
inner-list ::= passive-node active-node . . . passive-node
active-node ::= (width penalty offset)
passive-node ::= width

— 10 —

(x ^{ 1 2 } (163840 0)

- 1 2 \cdot (163840 50) x ^{ 1 1 } \cdot (163840 50) y %

(163840 -390)

+ 6 6 \cdot (163840 50) x ^{ 1 0 } \cdot (163840 50) y ^{ 2 } %

(163840 0)

- 2 2 0 \cdot (163840 50) x ^{ 9 } \cdot (163840 50) y ^{ 3 } %

(163840 -390)

+ 4 9 5 \cdot (163840 50) x ^{ 8 } \cdot (163840 50) y ^{ 4 } %

(163840 0)

- 7 9 2 \cdot (163840 50) x ^{ 7 } \cdot (163840 50) y ^{ 5 } %

(163840 -390)

+ 9 2 4 \cdot (163840 50) x ^{ 6 } \cdot (163840 50) y ^{ 6 } %

(163840 0)

- 7 9 2 \cdot (163840 50) x ^{ 5 } \cdot (163840 50) y ^{ 7 } %

(163840 -390)

+ 4 9 5 \cdot (163840 50) x ^{ 4 } \cdot (163840 50) y ^{ 8 } %

(163840 0)

- 2 2 0 \cdot (163840 50) x ^{ 3 } \cdot (163840 50) y ^{ 9 } %

(163840 -390)

+ 6 6 \cdot (163840 50) x ^{ 2 } \cdot (163840 50) y ^{ 1 0 } %

(163840 0)

- 1 2 \cdot (163840 50) x \cdot (163840 50) y ^{ 1 1 } %

(163840 -390)

+ y ^{ 1 2 })

Fig. 7: A TEX-item list extended with glue items.

delta-node ::= active-node + appendix
appendix ::= (id-number ptr demerits indentation)

The breaklist will be created using the function breaklist. line breaking is per-
formed with this list only; the TEX-item list becomes modified only indirectly since the
active nodes are shared. That means that the active nodes aren’t copied while creating
the breaklist. Instead, their memory addresses are put into the breaklist as a reference.
This is both memory saving and necessary, since later we deal with the TEX-item list
itself again in order to insert \nl-commands. So remember there exist two lists sharing
all the active nodes (and hence all the delta nodes). Figure 8 contains the breaklist
from our (x− y)12 example. Bear in mind that passive nodes are sums of widths. The
first line and the last line contain the beginning and ending delta nodes, respectively.
By default, their id-numbers are 0 and -1, respectively.

The task of setting the break points (i.e. break items) in the breaklist is up to the
function trybreak. During this phase, some active nodes are selected as “feasible” break
points. Thus, they will be extended and called “delta nodes” furtheron. By default, the
first and last node in a breaklist are delta nodes. When trybreak has finished, the ptr ’s
of the delta nodes point back to the best preceding delta node in terms of minimal total
demerits. So, by stepping through this pointer list, it is easy to find the best path for
breaking the whole breaklist apart. We use some terminology we’d like to explain:

width width of this item (both active and passive nodes)
penalty a numeric value which prohibits line breaking (if negative, line break-

ing will be merited)
offset distance to the most recent opening bracket
id-number the identification number of this delta node (1,2,3,...)
ptr pointer to the best delta node to come from with respect to the mini-

mal demerits path. (Note: a zero pointer indicates the very beginning

— 11 —

((0 0 0 0 0 0 0)

915227 (163840 0 0) 1347128 (163840 50 0) 1097271 (163840 50 0)

321308 (163840 -390 0) 1347128 (163840 50 0) 1097271 (163840 50 0)

598015 (163840 0 0) 1674808 (163840 50 0) 820564 (163840 50 0)

598015 (163840 -390 0) 1674808 (163840 50 0) 820564 (163840 50 0)

598015 (163840 0 0) 1674808 (163840 50 0) 820564 (163840 50 0)

598015 (163840 -390 0) 1674808 (163840 50 0) 820564 (163840 50 0)

598015 (163840 0 0) 1674808 (163840 50 0) 820564 (163840 50 0)

598015 (163840 -390 0) 1674808 (163840 50 0) 820564 (163840 50 0)

598015 (163840 0 0) 1674808 (163840 50 0) 820564 (163840 50 0)

598015 (163840 -390 0) 1347128 (163840 50 0) 820564 (163840 50 0)

874722 (163840 0 0) 1347128 (163840 50 0) 543857 (163840 50 0)

874722 (163840 -390 0) 1384446

(0 0 41140184 -1 0 2147483647 0))

Fig. 8: A breaklist. Three types of objects are included in a breaklist. Active nodes are the

lists with three elements. Delta nodes contain exactly seven elements. Passive nodes are integer atoms

representing a width.

of the breaklist)
demerits total demerits accumulated so far
indentation amount of indentation when breaking at this point

The algorithm itself will be described now. To determine the “quality” of a line we
introduce a value called “badness”. It simply is a heuristic describing how good-looking
a line comes out. This concept is due to Knuth/Plass(1981) and is a major concept of
TEX. We use a slightly different heuristic here. We do not measure badness in terms
of “stretchability” and “shrinkability”. Instead we measure how “full” a line is, where
“full” means that three quarters of the page width are optimal. Furthermore we add a
surplus badness for the indentation: the less indentation the better. The badness is a
value between 0 and 10000 and is calculated with the following code (displayed in figure
9). Surprisingly, we got a higher speed with floating point arithmetic here than with
integer arithmetic.

function badnessof (length ,indentation);
begin

temp←abs(length− 3
4 ·pagewidth)/(1

6 ·pagewidth);
return min(10000, 100 · temp3 + 2500·indentation/pagewidth)

end;

Fig. 9: The badness function. “Badness” is just a heuristic to compute a numerical value describing

how “good-looking” a line comes out. A correction term is applied to provide for indentation.

Figure 10 summarizes the line breaking algorithm. The code is part of the function
trybreak and describes the “heart” of our algorithm. Basically, it consists of two loops:
the outer loop steps through the breaklist considering each delta node as a potential
start of a new line while the inner loop looks ahead exactly one line (bounded by the
page-width or by the rightmost delta-node) checking each active node if it is a feasible
breakpoint, and if so, saving it as the best path of breaking. Or to put it in another way,
simply imagine a window as wide as a page which moves over the unbroken expression
from the very left to the very right. The left end of the window is put on every feasible
breakpoint determined earlier. The right end of the window just defines the border of
the search for feasible breakpoints within the window.

— 12 —

bottom←breaklist ; pagewidth← 〈 user defined page width 〉;
〈 set all variables not mentioned explicitly to zero or nil 〉;
while bottom do
begin { try a new line starting at this delta node }

base←car bottom ; top←cdr bottom ;
baseid←idof base ; baseptr←ptrof base ;
basedemerits←demeritsof base ;
baseoffset←offsetof base ;
baseindent←length←indentof base ;
total←total +widthof base ;
while top and length<pagewidth do
begin { consider this node for end of the line }

node←car top ;
penalty←penaltyof node ;
if 〈 node is a passive node 〉
then len←len+node
else begin { node is an active node }

badness← 〈 compute current badness from length andbaseindent 〉
penalty←penaltyof node ; offset←offsetof node ;
if badness < tolerance
or badness < 1−penalty
or 〈 this is the rightmost delta node 〉
then begin { we have a feasible breakpoint }

demerits←basedemerits+badness 2+penalty ·abs(penalty);
if 〈 node is a delta node 〉
then begin

if demerits<demeritsof node { better path found? }
then begin
〈 save current demerits and baseid to node 〉;
〈 compute amount of indentation 〉

end
end
else begin

feasible←feasible+1;
〈 create new delta node with feasible, baseid, demerits 〉;
〈 compute amount of indentation 〉

end;
if penalty = −10000 then top←nil{ must break here }

end;
length←length+wdithof node

end;
if top then top←cdr top

end;
〈 save the total length so far to the delta node 〉;
〈 step ahead to next delta node and count total length 〉

end;

Fig. 10: The code segment from trybreak dealing with line-breaking.

Earlier we introduced the concept of “badness” derived from TEX. But actually this

— 13 —

is not the only measure answering the question whether a certain point in the breaklist
is feasible or not. There are three conditions which decide whether a breakpoint is
feasible or not. The first condition requires the badness to be smaller than the value of
tolerance as specified by the user. This condition can be overridden if the active node
under consideration has a negative penalty whose (absolute, i.e. positive) amount is
greater than the badness. That means you can buy a breakpoint if you’ve got enough
money (i.e. a bonus = negative penalty) to pay the price (i.e. the badness). The
third condition just forces the rightmost delta node to be considered feasible anyway.13

At this point we introduce a second measure called “demerits” which is defined as
the sum of the demerits so far (i.e. up to the beginning of the line currently under
consideration), the squared badness and the sign-propagated square of the penalty.14

Now we have a measure which not only refers to the current line but to the previous
lines, too. Therefore, our modified Knuth-algorithm “optimizes” not only over one line
but over all lines.

Figure 11 should make clear what is happening to the breaklist and the TEX-item
list. For readability purposes we display the latter, but really it is the breaklist under
consideration within trybreak. As in the previous display of our example, you can
identify the active-nodes. These are the three element number lists. The third element
which is zero here is used as an offset width to the last opening bracket. This information
is used for indentation. The delta-nodes are remarkable. These are the number lists
with seven elements. Count them by their fourth element. They run 0, 1, 2 through
8, 9, -1. The fifth element gives you the way back through the list. Start at the last
delta-node. There the best way to come from is 1. So go to delta-node 1 where you find
0 as the best way to come from. Delta-node 0 is the beginning, so you’re finished. The
sixth element stands for the total demerits so far. The seventh element stands for the
amount of indentation. Here it is a zero because the term isn’t nested in our example.

We haven’t mentioned how we generate indentation yet. Generally speaking, inden-
tation is entirely directed by brackets, either round, curly, or dummy brackets. But
how do we compute the amount of indentation? First let’s turn to the code segment
which deals with this problem within the big line-braking algorithm shown before. The
contents of figure 12 explains what happens to the amount of indentation.

〈 compute amount of indentation 〉 ::=
begin

if offset>total
then indent←offset−total+baseindent { opening bracket case }
else if offset<baseoffset

then indent←findindent () { closing bracket case }
else indent←baseindent ; { no change case }

〈 save indent to delta-node 〉
end;

Fig. 12: The code segment from trybreak dealing with indentation.

The logic of this code segment is easily summarized. The offset is a measure of how
distant the last opening bracket is from the beginning of the whole expression. So in the

13 This is necessary since the end of the expression is naturally a breakpoint even if it is a bad one,

and the last delta node is needed for accounting purposes as well as for storing the pointer to the

preceding breakpoints.
14 The latter is evaluated as the product of the value (which can be positive or negative) and the

absolute value (which can be positive only).

— 14 —

((0 0 0 0 0 0 0)

x ^{ 1 2 } (163840 0 0)

- 1 2 \cdot (163840 50 0) x ^{ 1 1 }

\cdot (163840 50 0) y (163840 -390 0)

+ 6 6 \cdot (163840 50 0) x ^{ 1 0 }

\cdot (163840 50 0) y ^{ 2 } (163840 0 0)

- 2 2 0 \cdot (163840 50 0) x ^{ 9 }

\cdot (163840 50 0) y ^{ 3 } (163840 -390 0)

+ 4 9 5 \cdot (163840 50 0) x ^{ 8 }

\cdot (163840 50 0) y ^{ 4 } (163840 0 0)

- 7 9 2 \cdot (163840 50 0) x ^{ 7 }

\cdot (163840 50 0) y ^{ 5 } (163840 18624949 0 1 0 -151875 0)

+ 9 2 4 \cdot (163840 20463597 0 2 0 2500 0)

x ^{ 6 }

\cdot (163840 21448001 0 3 0 2500 0)

y ^{ 6 } (163840 22209856 0 4 0 1 0)

- 7 9 2 \cdot (163840 50 0) x ^{ 5 }

\cdot (163840 50 0) y ^{ 7 } (163840 25794763 0 5 0 -142299 0)

+ 4 9 5 \cdot (163840 50 0) x ^{ 4 }

\cdot (163840 50 0) y ^{ 8 } (163840 0 0)

- 2 2 0 \cdot (163840 50 0) x ^{ 3 }

\cdot (163840 50 0) y ^{ 9 } (163840 32964577 0 6 1 -207875 0)

+ 6 6 \cdot (163840 50 0) x ^{ 2 }

\cdot (163840 50 0) y ^{ 1 0 } (163840 0 0)

- 1 2 \cdot (163840 38009479 0 7 1 -149350 0)

x

\cdot (163840 38717176 0 8 1 -149374 0)

y ^{ 1 1 } (163840 39755738 0 9 1 -303975 0)

+ y ^{ 1 2 } (0 41140184 ?-1 1 -151866 ?)

Fig. 11: A TEX-item list extended with delta-nodes. From this list the line-breaking way can

be derived. Start with node –1, go to node 1 and from there to node 0. That makes one break point
at node 1.

case where offset is greater than the total width accumulated until the very beginning
of the line, the indentation is just the difference between total and the sum of offset
and the amount of indentation baseindent for the currently line. That’ll work if the
line currently under consideration contains at least one opening bracket which hasn’t
become closed in the same line. This case may be labelled the “opening bracket case”.
But what shall we do in the other cases? We have to decide if we’ve got a “closing
bracket case”, i.e. if we have at least one more closing bracket than we have opening
brackets, or if we’ve got a “no change case”, i.e. the number of opening brackets in
the current line matches the number of closing brackets in this line. This decision is
made by comparing offset<baseoffset . If the baseoffset , i.e. the offset at the beginning
of the line, is greater than offset , i.e. the offset at the current point, then we’ve got
the “closing bracket case”, otherwise we’ve got the “no change case”. In the latter,
the amount of indentation for the next line is just the amount of indentation for the
current line. But the “closing bracket case” causes us much trouble. So we need an
extra function dealing with this case, as displayed in figure 13.

This macro15 searches the list of delta-nodes previously created until it reaches a
delta-node (at least the very first delta-node in the breaklist) where the total width
accumulated so far, i.e. the variable local , is less than offset , i.e. the offset at the

15 Macros become expanded where they are called and thus share all variable names defined in the
code block where they are called. So, there is no need for argument passing if certain variable names

in the code block don’t differ from call to call.

— 15 —

macro function findindent ;
{ macro functions share all variables of outer code blocks }
begin { first check if we can save search time for equal destination }

if offset =lastoffset and baseptr =lastbaseptr
then return lastindent
else begin { search the delta-node-stack for previous indentation }

stack←deltastack ; lastoffset←offset ;
p←lastbaseptr←baseptr ;
while stack do { as long as we have a delta-node ahead }
begin

node←car stack ; { current delta-node }
if p=idof node then begin

p←ptrof node ; local←totalof node ;
if local<offset then stack←nil

end;
if stack then stack←cdr stack

end;
lastindent←offset−local+indentof node ;
return lastindent

end
end;

Fig. 13: The macro function findindent. This macro is used to compute the amount of inden-

tation in the “closing bracket case”. It causes some trouble since we have to travel back to previous
delta nodes.

end of the line under consideration, and computes the amount of indentation from the
difference of offset and local plus the amount of indentation so far. Plainly speaking, we
go back the lines until we find a line where we find the opening parenthesis matching the
closing parenthesis in the current line. When we’ve found it, we compute the amount of
indentation as described in the “opening bracket case”, but with local instead of total .

5 Postprocessing with the TEX module “tridefs.tex”

When a TEX-output-file has been created with the TRI it has to be processed by TEX
itself. But before you run TEX you should make sure the file looks the way you want it.
Sometimes you will find it necessary to add some TEX-code of your own or delete some
other TEX-code. This job is up to you before you finally run TEX.

During the TEX-run the sizes of brackets are determined. This task is not done by
the TRI. In order to produce proper sized brackets we put some \left(and \right)

TEX-commands where brackets are opened or closed. A new problem arises when an
expression has been broken up into several lines. Since, for every line, the number of
\left(and \right) TEX-commands must match but bracketed expressions may start
in one line and end in another, we have to insert the required number of “dummy”
parentheses (i.e. \right. and \left. TEX-commands) at the end of the current line
and the beginning of the following line. Therefore, we have to keep track of the depth
of bracketing. See the following figure 14 for the TEX-code actually applied.

There is a caveat against this method. Since opening and closing brackets needn’t lie
in the same line, it is possible that the height of the brackets can differ although they
should correspond in height. That will happen if the height of the text in the opening
line has a height different from the text in the closing line. We haven’t found a way of

— 16 —

tackling this problem yet, but we think it is possible to program a little TEX-macro for
this task. Furthermore, some macros deal with tricks we had to use in order to provide
for indentation, fraction handling and the like.

\def\qdd{\quad\quad} % simply a double quad

\def\frac#1#2{{#1\over#2}} % fractions from prefix notation

\newcount\parenthesis % nesting of brackets

\parenthesis=0 % intialize

\newcount\n % a temporary variable

% ---- round and curly brackets ----

\def\({\global\advance\parenthesis by1\left(}

\def\){\global\advance\parenthesis by-1\right)}

\def\{{\global\advance\parenthesis by1\left\lbrace}

\def\}{\global\advance\parenthesis by-1\right\rbrace}

\def\[{\relax} % dummy parenthesis

\def\]{\relax} % dummy parenthesis

% ---- provide for looping using tail recursion ----

% \loop ...what... \repeat

\def\loop#1\repeat{\global\n=0\global\let\body=#1\iterate}

\def\iterate{\body\let\next=\iterate\else\let\next=\relax\fi\next}

% ---- conditions and statements for loop interior

\def\ldd{\ifnum\n<\parenthesis\global\advance\n by1

\left.\nulldelimiterspace=0pt\mathsurround=0pt}

\def\rdd{\ifnum\n<\parenthesis\global\advance\n by1

\right.\nulldelimiterspace=0pt\mathsurround=0pt}

% ---- newline statement as issued by TRI ----

\def\nl{\loop\rdd\repeat\hfill\cr\quad\quad\loop\ldd\repeat{}}

% ---- indentation statement as issued by TRI ----

\def\OFF#1{\hskip#1sp\relax}

% ---- last newline statement before end of math group ----

\def\Nl{\hfill\cr}

Fig. 14: The file “tridefs.tex”. This is the code you have to use on the TEX side in order to

typeset output produced by our TRI.

There is at least one more line of TEX-code you have to insert by hand into the TEX-
input-file produced by TRI. This line runs

\input tridefs

and inputs the module tridefs.tex into the file. This is necessary because otherwise
TEX won’t know how to deal with our macro calls. If you use the TEX-input-file as
a “stand-alone” file, don’t forget a final \bye at the end of the text. If you use code
produced by TRI as part of a larger text then simply put the input-line just once at the
beginning of your text.

6 Experiments

We measured performance using the TIME-facility of REDUCE, which can be switched
on and off with the two commands

ON TIME;

OFF TIME;

— 17 —

We have tested our TRI on a µVAX-II operating under VAX/VMS, with no other users
operating during this phase in order to minimize interference with other processes,
e.g. caused by paging. The TRI code has been compiled with the PSL 3.2a-Compiler.
The following table presents results obtained with a small number of different terms.
All data were measured in CPU-seconds as displayed by LISP’s TIME-facility. For
expressions where special packages such as solve and int were involved we have taken
only effective output-time, i.e. the time consumption caused by producing the output
and not by evaluating the algebraic result.16

REDUCE- nor- TeX TeX- TeX-

Expression mal Break Indent

(x+y)12 0.82 0.75 3.42 3.47

(x+y)24 2.00 2.22 12.52 12.41

(x+y)36 4.40 4.83 21.48 21.44

(x+y)16/(v−w)16 2.27 2.38 12.18 12.19

solve((1+ξ)x2−2ξx+ξ,x) 0.41 0.62 0.89 0.87

solve(x3+x2µ+ν,x) 4.21 20.84 31.82 40.43

This short table should give you an impression of the performance of TRI. It goes with-
out saying that on other machines results may turn out which are quite different from
our results. But our intention is to show the relative and not the absolute performance.
Note that printing times are a function of expression complexity, as shown by rows three
and six.

7 User’s Guide to the REDUCE-TEX-Interface

If you intend to use the TRI you are required to load the compiled code. This can be
performed with the command

load!-package ’tri;

During the load, some default initializations are performed. The default page width is
set to 15 centimeters, the tolerance for page breaking is set to 20 by default. Moreover,
TRI is enabled to translate greek names, e.g. TAU or PSI, into equivalent TEX symbols,
e.g. τ or ψ, respectively. Letters are printed lowercase as defined through assertion of
the set LOWERCASE. The whole operation produces the following lines of output

***Function TEXVARPRI redefined

% set GREEK asserted

% set LOWERCASE asserted

% \hsize=150mm

% \tolerance 20

Now you can switch on and off the three TRI modes as you like. You can use the switches
alternatively and incrementally. That means you have to switch on TeX for receiving
standard TEX-output, or TeXBreak to receive broken TEX-output, or TeXIndent to

16 That means we assigned the result of an evaluation to an itermediate variable, and then we printed
this intermediate variable. Thus we could eliminate the time overhead produced by “pure” eval-

uation. Nevertheless, in terms of effective interactive answering time, the sum of evaluation and

printing time might be much more interesting than the “pure” printing time. In such a context the
percentage overhead caused by printing is the critical point. But since we talk about printing we

decided to document the “pure” printing time.

— 18 —

receive broken TEX-output plus indentation. Thus, the three levels of TRI are enabled
or disabled according to:

On TeX; % switch TeX is on

On TeXBreak; % switches TeX and TeXBreak are on

On TeXIndent; % switches TeX, TeXBreak and TeXIndent are on

Off TeXIndent; % switch TeXIndent is off

Off TeXBreak; % switches TeXBreak and TeXIndent are off

Off TeX; % all three switches are off

More specifically, if you switch off TeXBreak you implicitly quit TeXIndent, too, or, if
you switch off TeX you implicitly quit TeXBreak and, consequently, TeXIndent.

The most crucial point in defining how TRI breaks multiple lines of TEX-code is your
choice of the page width and the tolerance. As mentioned earlier, “tolerance” is related
to TEX’s famous line-breaking algorithm. The value of “tolerance” determines which
potential breakpoints are considered feasible and which not. The higher the tolerance,
the more breakpoints become feasible as determined by the value of “badness” associated
with each breakpoint. Breakpoints are considered feasible if the badness is less than the
tolerance. You can easily set values for page width and tolerance using

TeXsetbreak(page-width,tolerance);

where page-width is measured in millimeters17 and the tolerance is a positive integer
in the closed interval [0 . . . 10000]. You should choose a page width according to your
purposes, but allow a few centimeters for errors in TRI’s metric. For example, specify
140 millimeters for an effective 150 or 160 millimeter wide page. That way you have
a certain safety-margin to the borders of the page. Now let’s turn to the tolerance.
A tolerance of 0 means that actually no breakpoint will be considered feasible (except
those carrying a negative penalty), while a value of 10000 allows any breakpoint to
be considered feasible. Obviously, the choice of a tolerance has a great impact on
the time consumption of our line-breaking algorithm since time consumption increases
in proportion to the number of feasible breakpoints. So, the question is what values
to choose. For line-breaking without indentation, suitable values for the tolerance lie
between 10 and 100. As a rule of thumb, you should use higher values the deeper the
term is nested — if you can estimate. If you use indentation, you have to use much
higher tolerance values. This is necessary because badness is worsened by indentation.
So, TRI has to try harder to find suitable places where to break. Reasonable values for
tolerance here lie between 700 and 1500. A value of 1000 should be your first guess.
That’ll work for most expressions in a reasonable amount of time.

Sometimes you want to add your own REDUCE-symbol-to-TEX-item translations.
For such a task, TRI provides a function named TeXlet which binds any REDUCE-
symbol to one of the predefined TEX-items. A call to this function has the following
syntax:

TeXlet(REDUCE-symbol,TEX-item)

Three examples show how to do it right:

TeXlet(’velocity,’!v);

TeXlet(’gamma,’!\!G!a!m!m!a!);

TeXlet(’acceleration,’!\!v!a!r!t!h!e!t!a!);

17 You can also specify page width in scaled points (sp). Note: 1 pt = 65536 sp = 1/72.27 inch. The
function automatically chooses the appropiate dimension according to the size: all values greater

than 400 are considered to be scaled points.

— 19 —

Besides this method of single assertions you can choose to assert one of (currently) two
standard sets providing substitutions for lowercase and greek letters. These sets are
loaded by default. You can switch these sets on or off using the functions

TeXassertset setname;
TeXretractset setname;

where the setnames currently defined are ’GREEK and ’LOWERCASE. So far you have
learned only how to connect REDUCE-atoms with predefined TEX-items but not how
to create new TEX-items itself. We provide a way for adding standard TEX-items of any
class ’ORD, ’BIN, ’REL, ’OPN, ’CLO, ’PCT and LOP except for class ’INN which is
reserved for internal use by TRI only. You can call the function

TeXitem(item,class,list-of-widths)

e.g. together with a binding

TeXitem(’!\!n!a!b!l!a! ,’ORD,’(655360 327680 163840))

TeXlet(’NABLA,’!\!n!a!b!l!a!);

where item is a legal TEX-code name18, class is one of seven classes (see above) and
list-of-width is a non-empty list of elements each one representing the width of the
item in successive super-/subscript depth levels. That means that the first entry is
the breadth in display mode, the second stands for scriptstyle and the third stands for
scriptscriptstyle in TEX-terminology. But how can you retrieve the width information
required? For this purpose we provide the following small interactive TEX facility called
redwidth.tex documented in figure 15. Simply call

tex redwidth

on your local machine. Then you are prompted for the TEX-item you want the width
information for. Type “end” when you want to finish the session.

\newbox\testbox\newcount\xxx\newif\ifOK\def\endloop{end }

\def\widthof#1{\message{width is: }\wwidthof{$\displaystyle#1$}

\wwidthof{$\scriptstyle#1$}\wwidthof{$\scriptscriptstyle#1$}}

\def\wwidthof#1{\setbox\testbox=\hbox{#1}\xxx=\wd\testbox

\message{[\the\wd\testbox=\the\xxx sp]}}

\loop\message{Type in TeX item or say ’end’: }\read-1 to\answer

\ifx\answer\endloop\OKfalse\else\OKtrue\fi

\ifOK\widthof{\answer}

\repeat

\end

Fig. 15: The file “redwidth.tex”. This TEX code you can use to determine the width of specific

TEX-items.

Finally let us discuss how you can compile the TRI into a binary. (We refer to PSL,
but other LISP versions work quite similar.) First of all start REDUCE. Than type in

on comp;

symbolic;

18 Please note that any TEX-name ending with a letter must be followed by a blank to prevent from
interference with letters of following TEX-items. Note also that you can legalize a name by defining

it as a TEX-macro.

— 20 —

faslout "tri";

in "tri.red";

faslend;

bye;

We stress the fact that this procedure is definitely LISP dependent. Ask your local
REDUCE or LISP wizards how to adapt to it.

8 Examples

Some examples — which we think might be representative — shall demonstrate the
capabilities of our TRI. For each example we state (a) the REDUCE command (i.e. the
input), (b) the tolerance if it differs from the default, and (c) the output as produced
in a TEX run.

1 Standard Mode: TeXindent Tolerance: 250

(x+y)**16/(v-w)**16;

(
x16 + 16 · x15 · y + 120 · x14 · y2 + 560 · x13 · y3

+ 1820 · x12 · y4 + 4368 · x11 · y5 + 8008 · x10 · y6

+ 11440 · x9 · y7 + 12870 · x8 · y8 + 11440 · x7 · y9

+ 8008 · x6 · y10 + 4368 · x5 · y11 + 1820 · x4 · y12

+ 560 · x3 · y13 + 120 · x2 · y14 + 16 · x · y15 + y16
)
/(

v16 − 16 · v15 · w + 120 · v14 · w2 − 560 · v13 · w3

+ 1820 · v12 · w4 − 4368 · v11 · w5 + 8008 · v10 · w6 − 11440 · v9 · w7

+ 12870 · v8 · w8 − 11440 · v7 · w9 + 8008 · v6 · w10 − 4368 · v5 · w11

+ 1820 · v4 · w12 − 560 · v3 · w13 + 120 · v2 · w14 − 16 · v · w15 + w16
)

2 Integration Mode: TeX Tolerance: -;

int(1/(x**3+2),x)

−

2
1
3 ·
(

2 ·
√

3 · arctan

(
2

1
3−2·x
2

1
3 ·
√
3

)
+ ln

(
2

2
3 − 2

1
3 · x+ x2

)
− 2 · ln

(
2

1
3 + x

))
12

3 Integration Mode: TeXindent Tolerance: 1000

int(1/(x**4+3*x**2-1,x);

(√
2 ·
(

3 ·
√√

13− 3 ·
√

13 · ln
(
−
(√√

13− 3 ·
√

2

)
+ 2 · x

)
− 3 ·

√√
13− 3 ·

√
13 · ln

(√√
13− 3 ·

√
2 + 2 · x

)
+ 13 ·

√√
13− 3 · ln

(
−
(√√

13− 3 ·
√

2

)
+ 2 · x

)

— 21 —

− 13 ·
√√

13− 3 · ln
(√√

13− 3 ·
√

2 + 2 · x
)

+ 6 ·
√√

13 + 3 ·
√

13 · arctan

(
2 · x√√

13 + 3 ·
√

2

)

− 26 ·
√√

13 + 3 · arctan

(
2 · x√√

13 + 3 ·
√

2

)))
/104

4 Solving Equations Mode: TeXindent Tolerance: 1000

solve(x**3+x**2*mu+nu=0,x);

{
x = −

(((
9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)2

3 ·
√

3 · i

+
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)2

3

+ 2 ·
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)1

3 ·

2
1
3 · 31

6 · µ− 2
2
3 ·
√

3 · 31
3 · i · µ2 + 2

2
3 · 31

3 · µ2
)
/(

6 ·
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)1

3 · 21
3 · 31

6

))
x =

((
9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)2

3 ·
√

3 · i

−
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)2

3

− 2 ·
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)1

3 ·

2
1
3 · 31

6 · µ− 2
2
3 ·
√

3 · 31
3 · i · µ2 − 2

2
3 · 31

3 · µ2
)
/(

6 ·
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)1

3 · 21
3 · 31

6

)
x =

((
9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
)2

3

−
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27·
√

3 · ν
)1

3 · 21
3 · 31

6 · µ+ 2
2
3 · 31

3 · µ2

)
/(

3 ·
(

9 ·
√

4 · µ3 · ν + 27 · ν2 − 2 ·
√

3 · µ3 − 27 ·
√

3 · ν
) 1

3 · 2 1
3 · 3 1

6

)}
5 Matrix Printing Mode: TeX Tolerance: --

mat((1,a-b,1/(c-d)),(a**2-b**2,1,sqrt(c)),((a+b)/(c-d),sqrt(d),1)); 1 a− b 1
c−d

a2 − b2 1
√
c

a+b
c−d

√
d 1

— 22 —

9 Caveats

Techniques for printing mathematical expressions are available everywhere. This TRI
adds only a highly specialized version for most REDUCE output. The emphasis is on the
word most . One major caveat is that we cannot print SYMBOLIC-mode output from
REDUCE. This could be done best in a WEB-like programming-plus-documentation
style. Nevertheless, as Knuth’s WEB is already available for PASCAL and C, hopefully
someone will write a LISP-WEB or a REDUCE-WEB as well.

Whenever you discover a bug in our program please let us know. Send us a short
report accompanied by an output listing.19 We’ll try to fix the error. The whole TRI
package consists of following files:
tri.tex This text as a TEX-input file.
tri.red The REDUCE-LISP source code for the TRI.
tridefs.tex The TEX-input file to be used together with output from the TRI.
redwidth.tex The TEX-input file for interactive determination of TEX-item widths.
tritest.red Run this REDUCE file to check if TRI works correctly.
tritest.tex When you have run tritest.red just make a TEX run with this file

to see all the nice things TRI is able to produce.

10 References

Antweiler, W.; Strotmann, A.; Pfenning, Th.; Winkelmann, V. (1986) Zwischenbericht über

den Status der Arbeiten am REDUCE-TEX-Anschluß. Internal Paper, Rechenzentrum der Uni-

versität zu Köln, November 1986.

Fateman, Richard J. (1987) TEX Output from MACSYMA-like Systems. ACM SIGSAM Bulletin,
Vol. 21, No. 4, Issue #82, November 1987, pp. 1–5.

Knuth, Donald E.; Plass, Michael F. (1981) Breaking Paragraphs into Lines. Software—Practice
and Experience, Vol. 11, 1981, pp. 1119–1184.

Knuth, Donald E. (1986) The TEXbook. Addison-Wesley, Readings/Ma., sixth printing, 1986.

Hearn, Anthony C. (1987) REDUCE User’s Manual, Version 3.3. The RAND Corporation, Santa
Monica, Ca., July 1987.

19 You can reach us with e-mail at the following addresses: Werner Antweiler: antweil@epas.utoronto.ca,

Andreas Strotmann: strotmann rrz.uni-koeln.de and Volker Winkelmann: winkelmann rrz.uni-

koeln.de.

