
The Standard Lisp Report

Jed Marti A. C. Hearn M. L. Griss C. Griss

1 Introduction

Although the programming language LISP was first formulated in 1960 [7],
a widely accepted standard has never appeared. As a result, various dialects
of LISP were produced [1, 2, 6, 10, 8, 9] in some cases several on the same
machine! Consequently, a user often faces considerable difficulty in moving
programs from one system to another. In addition, it is difficult to write
and use programs which depend on the structure of the source code such as
translators, editors and cross-reference programs.

In 1969, a model for such a standard was produced [4] as part of a general
effort to make a large LISP based algebraic manipulation program, RE-
DUCE [5], as portable as possible. The goal of this work was to define a
uniform subset of LISP 1.5 and its variants so that programs written in this
subset could run on any reasonable LISP system.

In the intervening years, two deficiencies in the approach taken in Ref. [4]
have emerged. First in order to be as general as possible, the specific seman-
tics and values of several key functions were left undefined. Consequently,
programs built on this subset could not make any assumptions about the
form of the values of such functions. The second deficiency related to the
proposed method of implementation of this language. The model considered
in effect two versions of LISP on any given machine, namely Standard LISP
and the LISP of the host machine (which we shall refer to as Target LISP).
This meant that if any definition was stored in interpretive form, it would
vary from implementation to implementation, and consequently one could
not write programs in Standard LISP which needed to assume any knowl-
edge about the structure of such forms. This deficiency became apparent
during recent work on the development of a portable compiler for LISP [3].
Clearly a compiler has to know precisely the structure of its source code; we

1

1 INTRODUCTION 2

concluded that the appropriate source was Standard LISP and not Target
LISP.

With these thoughts in mind we decided to attempt again a definition of
Standard LISP. However, our approach this time is more aggressive. In this
document we define a standard for a reasonably large subset of LISP with
as precise as possible a statement about the semantics of each function.
Secondly, we now require that the target machine interpreter be modified or
written to support this standard, rather than mapping Standard LISP onto
Target LISP as previously.

We have spent countless hours in discussion over many of the definitions
given in this report. We have also drawn on the help and advice of a lot
of friends whose names are given in the Acknowledgements. Wherever pos-
sible, we have used the definition of a function as given in the LISP 1.5
Programmer’s Manual [7] and have only deviated where we felt it desirable
in the light of LISP programming experience since that time. In particular,
we have given considerable thought to the question of variable bindings and
the definition of the evaluator functions EVAL and APPLY. We have also
abandoned the previous definition of LISP arrays in favor of the more ac-
cepted idea of a vector which most modern LISP systems support. These are
the places where we have strayed furthest from the conventional definitions,
but we feel that the consistency which results from our approach is worth
the redefinition.

We have avoided entirely in this report problems which arise from environ-
ment passing, such as those represented by the FUNARG problem. We do
not necessarily exclude these considerations from our standard, but in this
report have decided to avoid the controversy which they create. The se-
mantic differences between compiled and interpreted functions is the topic
of another paper [3]. Only functions which affect the compiler in a general
way make reference to it.

This document is not intended as an introduction to LISP rather it is as-
sumed that the reader is already familiar with some version. The docu-
ment is thus intended as an arbiter of the syntax and semantics of Standard
LISP. However, since it is not intended as an implementation description,
we deliberately leave unspecified many of the details on which an actual
implementation depends. For example, while we assume the existence of a
symbol table for atoms (the ”object list” in LISP terminology), we do not
specify its structure, since conventional LISP programming does not require

2 PRELIMINARIES 3

this information. Our ultimate goal, however, is to remedy this by defin-
ing an interpreter for Standard LISP which is sufficiently complete that its
implementation on any given computer will be straightforward and precise.
At that time, we shall produce an implementation level specification for
Standard LISP which will extend the description of the primitive functions
defined herein by introducing a new set of lower level primitive functions in
which the structure of the symbol table, heap and so on may be defined.

The plan of this chapter is as follows. In Section 2 we describe the various
data types used in Standard LISP. In Section 3, a description of all Stan-
dard LISP functions is presented, organized by type. These functions are
defined in an RLISP syntax which is easier to read than LISP S-expressions.
Section 4 describes global variables which control the operation of Standard
LISP.

2 Preliminaries

2.1 Primitive Data Types

integer Integers are also called ”fixed” numbers. The magnitude of an in-
teger is unrestricted. Integers in the LISP input stream are recognized
by the grammar:

<digit> ::= 0|1|2|3|4|5|6|7|8|9
<unsigned-integer> ::= <digit>|<unsigned-integer><digit>
<integer> ::= <unsigned-integer> |

+<unsigned-integer> |
—<unsigned-integer>

floating - Any floating point number. The precision of floating point num-
bers is determined solely by the implementation. In BNF floating
point numbers are recognized by the grammar:

<base> ::= <unsigned-integer>.|.<unsigned-integer>|
<unsigned-integer>.<unsigned-integer>
<unsigned-floating> ::= <base>|
<base>E<unsigned-integer>|
<base>E-<unsigned-integer>|
<base>E+<unsigned-integer>

<floating> ::= <unsigned-floating>|

2 PRELIMINARIES 4

+<unsigned-floating>|-<unsigned-floating>

id An identifier is a string of characters which may have the following items
associated with it.

print name The characters of the identifier.

flags An identifier may be tagged with a flag. Access is by the
FLAG, REMFLAG, and FLAGP functions defined in section 3.4
on page 16.

properties An identifier may have an indicator-value pair associated
with it. Access is by the PUT, GET, and REMPROP functions
defined in section 3.4 on page 16.

values/functions An identifier may have a value associated with it.
Access to values is by SET and SETQ defined in section 3.6 on
page 19. The method by which the value is attached to the identi-
fier is known as the binding type, being one of LOCAL, GLOBAL,
or FLUID. Access to the binding type is by the GLOBAL, GLOB-
ALP, FLUID, FLUIDP, and UNFLUID functions.

An identifier may have a function or macro associated with it.
Access is by the PUTD, GETD, and REMD functions (see “Func-
tion Definition”, section 3.5, on page 17). An identifier may not
have both a function and a value associated with it.

OBLIST entry An identifier may be entered and removed from a
structure called the OBLIST. Its presence on the OBLIST does
not directly affect the other properties. Access to the OBLIST is
by the INTERN, REMOB, and READ functions.

The maximum length of a Standard LISP identifier is 24 characters
(excluding occurrences of the escape character !) but an implementa-
tion may allow more. Special characters (digits in the first position
and punctuation) must be prefixed with an escape character, an ! in
Standard LISP. In BNF identifiers are recognized by the grammar:

<special-character> ::= !<any-character>
<alphabetic> ::=

A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|
a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<lead-character> ::= <special-character>|<alphabetic>
<regular-character> ::= <lead-character>|<digit>
<last-part> ::= <regular-character> |

<last-part><regular-character>

2 PRELIMINARIES 5

<id> ::= <lead-character>|<lead-character><last-part>

Note: Using lower case letters in identifiers may cause portability prob-
lems. Lower case letters are automatically converted to upper case
when the !*RAISE flag is T.

string A set of characters enclosed in double quotes as in ”THIS IS A
STRING”. A quote is included by doubling it as in ”HE SAID,
””LISP”””. The maximum size of strings is 80 characters but an im-
plementation may allow more. Strings are not part of the OBLIST and
are considered constants like numbers, vectors, and function-pointers.

dotted-pair A primitive structure which has a left and right part. A no-
tation called dot-notation is used for dotted pairs and takes the form:

(<left-part> . <right-part>)

The <left-part> is known as the CAR portion and the <right-part>
as the CDR portion. The left and right parts may be of any type.
Spaces are used to resolve ambiguity with floating point numbers.

vector A primitive uniform structure in which an integer index is used to
access random values in the structure. The individual elements of a
vector may be of any type. Access to vectors is restricted to functions
defined in “Vectors” section 3.9 on page 25. A notation for vectors,
vector-notation, has the elements of a vector surrounded by square
brackets1

<elements> ::= <any>|<any> <elements>
<vector> ::= [<elements>]

function-pointer An implementation may have functions which deal with
specific data types other than those listed. The use of these enti-
ties is to be avoided with the exception of a restricted use of the
function-pointer, an access method to compiled EXPRs and FEXPRs.
A particular function-pointer must remain valid throughout execution.
Systems which change the location of a function must use either an
indirect reference or change all occurrences of the associated value.
There are two classes of use of function-pointers, those which are sup-
ported by Standard LISP but are not well defined, and those which
are well defined.

1Vector elements are not separated by commas as in the published version of this
document.

2 PRELIMINARIES 6

Not well defined Function pointers may be displayed by the print
functions or expanded by EXPLODE. The value appears in the
convention of the implementation site. The value is not defined
in Standard LISP. Function pointers may be created by COM-
PRESS in the format used for printing but the value used is not
defined in Standard LISP. Function pointers may be created by
functions which deal with compiled function loading. Again, the
values created are not well defined in Standard LISP.

Well defined The function pointer associated with an EXPR or FEXPR
may be retrieved by GETD and is valid as long as Standard LISP
is in execution. Function pointers may be stored using PUTD,
PUT, SETQ and the like or by being bound to variables. Func-
tion pointers may be checked for equivalence by EQ. The value
may be checked for being a function pointer by the CODEP func-
tion.

2.2 Classes of Primitive Data Types

The classes of primitive types are a notational convenience for describing
the properties of functions.

boolean The set of global variables {T,NIL}, or their respective values, {T,
NIL}.

extra-boolean Any value in the system. Anything that is not NIL has the
boolean interpretation T.

ftype The class of definable function types. The set of ids {EXPR, FEXPR,
MACRO}.

number The set of {integer, floating}.

constant The set of {integer, floating, string, vector, function-pointer}.
Constants evaluate to themselves (see the definition of EVAL in “The
Interpreter”, section 3.14 on page 39).

any The set of {integer, floating, string, id, dotted-pair, vector, function-
pointer}. An S-expression is another term for any. All Standard LISP
entities have some value unless an ERROR occurs during evaluation
or the function causes transfer of control (such as GO and RETURN).

atom The set {any}-{dotted-pair}.

2 PRELIMINARIES 7

2.3 Structures

Structures are entities created out of the primitive types by the use of dotted-
pairs. Lists are structures very commonly required as actual parameters to
functions. Where a list of homogeneous entities is required by a function
this class will be denoted by <xxx-list> where xxx is the name of a class
of primitives or structures. Thus a list of ids is an id-list, a list of integers
an integer-list and so on.

list A list is recursively defined as NIL or the dotted-pair (any . list). A
special notation called list-notation is used to represent lists. List-
notation eliminates extra parentheses and dots. The list (a . (b . (c .
NIL))) in list notation is (a b c). List-notation and dot-notation may
be mixed as in (a b . c) or (a (b . c) d) which are (a . (b . c)) and (a
. ((b . c) . (d . NIL))). In BNF lists are recognized by the grammar:

<left-part> ::= (| <left-part> <any>
<list> ::= <left-part>) | <left-part> . <any>)

Note: () is an alternate input representation of NIL.

alist An association list; each element of the list is a dotted-pair, the CAR
part being a key associated with the value in the CDR part.

cond-form A cond-form is a list of 2 element lists of the form:

(ANTECEDENT:any CONSEQUENT:any)

The first element will henceforth be known as the antecedent and the
second as the consequent. The antecedent must have a value. The
consequent may have a value or an occurrence of GO or RETURN as
described in the “Program Feature Functions”, section 3.7 on page 22.

lambda A LAMBDA expression which must have the form (in list nota-
tion): (LAMBDA parameters body). “parameters” is a list of formal
parameters for “body” an S-expression to be evaluated. The seman-
tics of the evaluation are defined with the EVAL function (see “The
Interpreter”, section 3.14 on page 39).

function A LAMBDA expression or a function-pointer to a function. A
function is always evaluated as an EVAL, SPREAD form.

2 PRELIMINARIES 8

2.4 Function Descriptions

Each function is provided with a prototypical header line. Each formal
parameter is given a name and suffixed with its allowed type. Lower case,
italic tokens are names of classes and upper case, bold face, tokens are
parameter names referred to in the definition. The type of the value returned
by the function (if any) is suffixed to the parameter list. If it is not commonly
used the parameter type may be a specific set enclosed in brackets {. . . }.
For example:

PUTD(FNAME:id, TYPE:ftype, BODY:{lambda, function-pointer}):id

PUTD is a function with three parameters. The parameter FNAME is an
id to be the name of the function being defined. TYPE is the type of the
function being defined and BODY is a lambda expression or a function-
pointer. PUTD returns the name of the function being defined.

Functions which accept formal parameter lists of arbitrary length have the
type class and parameter enclosed in square brackets indicating that zero or
more occurrences of that argument are permitted. For example:

AND([U:any]):extra-boolean

AND is a function which accepts zero or more arguments which may be of
any type.

2.5 Function Types

EVAL type functions are those which are invoked with evaluated arguments.
NOEVAL functions are invoked with unevaluated arguments. SPREAD
type functions have their arguments passed in one-to-one correspondence
with their formal parameters. NOSPREAD functions receive their argu-
ments as a single list. EVAL, SPREAD functions are associated with EXPRs
and NOEVAL, NOSPREAD functions with FEXPRs. EVAL, NOSPREAD
and NOEVAL, SPREAD functions can be simulated using NOEVAL, NO-
SPREAD functions or MACROs.

EVAL, SPREAD type functions may have a maximum of 15 parameters.
There is no limit on the number of parameters a NOEVAL, NOSPREAD

2 PRELIMINARIES 9

function or MACRO may have.

In the context of the description of an EVAL, SPREAD function, then we
speak of the formal parameters we mean their actual values. However, in a
NOEVAL, NOSPREAD function it is the unevaluated actual parameters.

A third function type, the MACRO, implements functions which create S-
expressions based on actual parameters. When a macro invocation is en-
countered, the body of the macro, a lambda expression, is invoked as a
NOEVAL, NOSPREAD function with the macro’s invocation bound as a
list to the macros single formal parameter. When the macro has been evalu-
ated the resulting S-expression is reevaluated. The description of the EVAL
and EXPAND functions provide precise details.

2.6 Error and Warning Messages

Many functions detect errors. The description of such functions will include
these error conditions and suggested formats for display of the generated
error messages. A call on the ERROR function is implied but the error
number is not specified by Standard LISP. In some cases a warning message
is sufficient. To distinguish between errors and warnings, errors are prefixed
with five asterisks and warnings with only three.

Primitive functions check arguments that must be of a certain primitive type
for being of that type and display an error message if the argument is not
correct. The type mismatch error always takes the form:

***** PARAMETER not TYPE for FN

Here PARAMETER is the unacceptable actual parameter, TYPE is the type
that PARAMETER was supposed to be. FN is the name of the function
that detected the error.

2.7 Comments

The character % signals the start of a comment, text to be ignored during
parsing. A comment is terminated by the end of the line it is on. The
function READCH must be able to read a comment one character at a

3 FUNCTIONS 10

time. Comments are transparent to the function READ. % may occur as a
character in identifiers by preceding it with the escape character !.

3 Functions

3.1 Elementary Predicates

Functions in this section return T when the condition defined is met and
NIL when it is not. Defined are type checking functions and elementary
comparisons.

ATOM(U:any):boolean eval, spread
Returns T if U is not a pair.
EXPR PROCEDURE ATOM(U);

NULL PAIRP U;

CODEP(U:any):boolean eval, spread
Returns T if U is a function-pointer.

CONSTANTP(U:any):boolean eval, spread
Returns T if U is a constant (a number, string, function-pointer, or
vector).
EXPR PROCEDURE CONSTANTP(U);

NULL OR(PAIRP U, IDP U);

EQ(U:any, V:any):boolean eval, spread
Returns T if U points to the same object as V. EQ is not a reliable
comparison between numeric arguments.

EQN(U:any, V:any):boolean eval, spread
Returns T if U and V are EQ or if U and V are numbers and have
the same value and type.

3 FUNCTIONS 11

EQUAL(U:any, V:any):boolean eval, spread
Returns T if U and V are the same. Dotted-pairs are compared
recursively to the bottom levels of their trees. Vectors must have
identical dimensions and EQUAL values in all positions. Strings
must have identical characters. Function pointers must have EQ
values. Other atoms must be EQN equal.

FIXP(U:any):boolean eval, spread
Returns T if U is an integer (a fixed number).

FLOATP(U:any):boolean eval, spread
Returns T if U is a floating point number.

IDP(U:any):boolean eval, spread
Returns T if U is an id.

MINUSP(U:any):boolean eval, spread
Returns T if U is a number and less than 0. If U is not a number or
is a positive number, NIL is returned.
EXPR PROCEDURE MINUSP(U);

IF NUMBERP U THEN LESSP(U, 0) ELSE NIL;

NULL(U:any):boolean eval, spread
Returns T if U is NIL.
EXPR PROCEDURE NULL(U);

U EQ NIL;

NUMBERP(U:any):boolean eval, spread
Returns T if U is a number (integer or floating).
EXPR PROCEDURE NUMBERP(U);

IF OR(FIXP U, FLOATP U) THEN T ELSE NIL;

3 FUNCTIONS 12

ONEP(U:any):boolean eval, spread.
Returns T if U is a number and has the value 1 or 1.0. Returns NIL
otherwise. a

EXPR PROCEDURE ONEP(U);

OR(EQN(U, 1), EQN(U, 1.0));

aThe definition in the published report is incorrect as it does not return T for
U of 1.0.

PAIRP(U:any):boolean eval, spread
Returns T if U is a dotted-pair.

STRINGP(U:any):boolean eval, spread
Returns T if U is a string.

VECTORP(U:any):boolean eval, spread
Returns T if U is a vector.

ZEROP(U:any):boolean eval, spread.
Returns T if U is a number and has the value 0 or 0.0. Returns NIL
otherwise.a

EXPR PROCEDURE ZEROP(U);

OR(EQN(U, 0), EQN(U, 0.0));

aThe definition in the published report is incorrect as it does not return T for
U of 0.0.

3.2 Functions on Dotted-Pairs

The following are elementary functions on dotted-pairs. All functions in this
section which require dotted-pairs as parameters detect a type mismatch
error if the actual parameter is not a dotted-pair.

3 FUNCTIONS 13

CAR(U:dotted-pair):any eval, spread
CAR(CONS(a, b)) → a. The left part of U is returned. The type
mismatch error occurs if U is not a dotted-pair.

CDR(U:dotted-pair):any eval, spread
CDR(CONS(a, b)) → b. The right part of U is returned. The type
mismatch error occurs if U is not a dotted-pair.

The composites of CAR and CDR are supported up to 4 levels, namely:

CAAAAR CAAAR CAAR
CAAADR CAADR CADR
CAADAR CADAR CDAR
CAADDR CADDR CDDR
CADAAR CDAAR
CADADR CDADR
CADDAR CDDAR
CADDDR CDDDR
CDAAAR
CDAADR
CDADAR
CDADDR
CDDAAR
CDDADR
CDDDAR
CDDDDR

CONS(U:any, V:any):dotted-pair eval, spread
Returns a dotted-pair which is not EQ to anything and has U as its
CAR part and V as its CDR part.

3 FUNCTIONS 14

LIST([U:any]):list noeval, nospread, or macro
A list of the evaluation of each element of U is returned. The order of
evaluation need not be first to last as the following definition implies.a

FEXPR PROCEDURE LIST(U);

EVLIS U;

aThe published report’s definition implies a specific ordering.

RPLACA(U:dotted-pair, V:any):dotted-pair eval, spread
The CAR portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (V . b) is returned. The type mismatch error
occurs if U is not a dotted-pair.

RPLACD(U:dotted-pair, V:any):dotted-pair eval, spread
The CDR portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (a . V) is returned. The type mismatch error
occurs if U is not a dotted-pair.

3.3 Identifiers

The following functions deal with identifiers and the OBLIST, the structure
of which is not defined. The function of the OBLIST is to provide a symbol
table for identifiers created during input. Identifiers created by READ which
have the same characters will therefore refer to the same object (see the EQ
function in “Elementary Predicates”, section 3.1 on page 10).

3 FUNCTIONS 15

COMPRESS(U:id-list):{atom-vector} eval, spread
U is a list of single character identifiers which is built into a Standard
LISP entity and returned. Recognized are numbers, strings, and
identifiers with the escape character prefixing special characters. The
formats of these items appear in “Primitive Data Types” section 2.1
on page 3. Identifiers are not interned on the OBLIST. Function
pointers may be compressed but this is an undefined use. If an entity
cannot be parsed out of U or characters are left over after parsing
an error occurs:

***** Poorly formed atom in COMPRESS

EXPLODE(U:{atom}-{vector}):id-list eval, spread
Returned is a list of interned characters representing the characters to
print of the value of U. The primitive data types have these formats:
integer Leading zeroes are suppressed and a minus sign prefixes the

digits if the integer is negative.

floating The value appears in the format [-]0.nn...nnE[-]mm if the
magnitude of the number is too large or small to display in
[-]nnnn.nnnn format. The crossover point is determined by the
implementation.

id The characters of the print name of the identifier are produced
with special characters prefixed with the escape character.

string The characters of the string are produced surrounded by dou-
ble quotes ”. . . ”.

function-pointer The value of the function-pointer is created as a
list of characters conforming to the conventions of the system
site.

The type mismatch error occurs if U is not a number, identifier,
string, or function-pointer.

GENSYM():identifier eval, spread
Creates an identifier which is not interned on the OBLIST and con-
sequently not EQ to anything else.

3 FUNCTIONS 16

INTERN(U:{id,string}):id eval, spread
INTERN searches the OBLIST for an identifier with the same print
name as U and returns the identifier on the OBLIST if a match
is found. Any properties and global values associated with U may
be lost. If U does not match any entry, a new one is created and
returned. If U has more than the maximum number of characters
permitted by the implementation (the minimum number is 24) an
error occurs:

***** Too many characters to INTERN

REMOB(U:id):id eval, spread
If U is present on the OBLIST it is removed. This does not affect U
having properties, flags, functions and the like. U is returned.

3.4 Property List Functions

With each id in the system is a “property list”, a set of entities which are
associated with the id for fast access. These entities are called “flags” if
their use gives the id a single valued property, and “properties” if the id is
to have a multivalued attribute: an indicator with a property.

Flags and indicators may clash, consequently care should be taken to avoid
this occurrence. Flagging X with an id which already is an indicator for X
may result in that indicator and associated property being lost. Likewise,
adding an indicator which is the same id as a flag may result in the flag
being destroyed.

FLAG(U:id-list, V:id):NIL eval, spread
U is a list of ids which are flagged with V. The effect of FLAG is
that FLAGP will have the value T for those ids of U which were
flagged. Both V and all the elements of U must be identifiers or the
type mismatch error occurs.

3 FUNCTIONS 17

FLAGP(U:any, V:any):boolean eval, spread
Returns T if U has been previously flagged with V, else NIL. Returns
NIL if either U or V is not an id.

GET(U:any, IND:any):any eval, spread
Returns the property associated with indicator IND from the prop-
erty list of U. If U does not have indicator IND, NIL is returned.
GET cannot be used to access functions (use GETD instead).

PUT(U:id, IND:id, PROP:any):any eval, spread
The indicator IND with the property PROP is placed on the property
list of the id U. If the action of PUT occurs, the value of PROP is
returned. If either of U and IND are not ids the type mismatch error
will occur and no property will be placed. PUT cannot be used to
define functions (use PUTD instead).

REMFLAG(U:any-list, V:id):NIL eval, spread
Removes the flag V from the property list of each member of the
list U. Both V and all the elements of U must be ids or the type
mismatch error will occur.

REMPROP(U:any, IND:any):any eval, spread
Removes the property with indicator IND from the property list of U.
Returns the removed property or NIL if there was no such indicator.

3.5 Function Definition

Functions in Standard LISP are global entities. To avoid function-variable
naming clashes no variable may have the same name as a function.

3 FUNCTIONS 18

DE(FNAME:id, PARAMS:id-list, FN:any):id noeval, nospread
The function FN with the formal parameter list PARAMS is added
to the set of defined functions with the name FNAME. Any previ-
ous definitions of the function are lost. The function created is of
type EXPR. If the !*COMP variable is non-NIL, the EXPR is first
compiled. The name of the defined function is returned.
FEXPR PROCEDURE DE(U);

PUTD(CAR U, ’EXPR, LIST(’LAMBDA, CADR U, CADDR U));

DF(FNAME:id, PARAM:id-list, FN:any):id noeval, nospread
The function FN with formal parameter PARAM is added to the set
of defined functions with the name FNAME. Any previous definitions
of the function are lost. The function created is of type FEXPR. If
the !*COMP variable is T the FEXPR is first compiled. The name
of the defined function is returned.
FEXPR PROCEDURE DF(U);

PUTD(CAR U, ’FEXPR, LIST(’LAMBDA, CADR U, CADDR U));

DM(MNAME:id, PARAM:id-list, FN:any):id noeval, nospread
The macro FN with the formal parameter PARAM is added to the
set of defined functions with the name MNAME. Any previous def-
initions of the function are overwritten. The function created is of
type MACRO. The name of the macro is returned.
FEXPR PROCEDURE DM(U);

PUTD(CAR U, ’MACRO, LIST(’LAMBDA, CADR U, CADDR U));

GETD(FNAME:any):{NIL, dotted-pair} eval, spread
If FNAME is not the name of a defined function, NIL is returned. If
FNAME is a defined function then the dotted-pair

(TYPE:ftype . DEF:{function-pointer, lambda})

is returned.

3 FUNCTIONS 19

PUTD(FNAME:id, TYPE:ftype, BODY:function):id eval, spread
Creates a function with name FNAME and definition BODY of type
TYPE. If PUTD succeeds the name of the defined function is re-
turned. The effect of PUTD is that GETD will return a dotted-
pair with the functions type and definition. Likewise the GLOBALP
predicate will return T when queried with the function name.
If the function FNAME has already been declared as a GLOBAL or
FLUID variable the error:

***** FNAME is a non-local variable

occurs and the function will not be defined. If function FNAME
already exists a warning message will appear:

*** FNAME redefined

The function defined by PUTD will be compiled before definition if
the !*COMP global variable is non-NIL.

REMD(FNAME:id):{NIL, dotted-pair} eval, spread
Removes the function named FNAME from the set of defined func-
tions. Returns the (ftype . function) dotted-pair or NIL as does
GETD. The global/function attribute of FNAME is removed and
the name may be used subsequently as a variable.

3.6 Variables and Bindings

A variable is a place holder for a Standard LISP entity which is said to be
bound to the variable. The scope of a variable is the range over which the
variable has a defined value. There are three different binding mechanisms
in Standard LISP.

Local Binding This type of binding occurs only in compiled functions. Lo-
cal variables occur as formal parameters in lambda expressions and as
PROG form variables. The binding occurs when a lambda expression
is evaluated or when a PROG form is executed. The scope of a local
variable is the body of the function in which it is defined.

3 FUNCTIONS 20

Global Binding Only one binding of a global variable exists at any time
allowing direct access to the value bound to the variable. The scope
of a global variable is universal. Variables declared GLOBAL may
not appear as parameters in lambda expressions or as PROG form
variables. A variable must be declared GLOBAL prior to its use as
a global variable since the default type for undeclared variables is
FLUID.

Fluid Binding Fluid variables are global in scope but may occur as formal
parameters or PROG form variables. In interpreted functions all for-
mal parameters and PROG form variables are considered to have fluid
binding until changed to local binding by compilation. When fluid
variables are used as parameters they are rebound in such a way that
the previous binding may be restored. All references to fluid variables
are to the currently active binding.

FLUID(IDLIST:id-list):NIL eval, spread
The ids in IDLIST are declared as FLUID type variables (ids not
previously declared are initialized to NIL). Variables in IDLIST al-
ready declared FLUID are ignored. Changing a variable’s type from
GLOBAL to FLUID is not permissible and results in the error:

***** ID cannot be changed to FLUID

FLUIDP(U:any):boolean eval, spread
If U has been declared FLUID (by declaration only) T is returned,
otherwise NIL is returned.

GLOBAL(IDLIST:id-list):NIL eval, spread
The ids of IDLIST are declared global type variables. If an id has not
been declared previously it is initialized to NIL. Variables already de-
clared GLOBAL are ignored. Changing a variables type from FLUID
to GLOBAL is not permissible and results in the error:

***** ID cannot be changed to GLOBAL

3 FUNCTIONS 21

GLOBALP(U:any):boolean eval, spread
If U has been declared GLOBAL or is the name of a defined function,
T is returned, else NIL is returned.

SET(EXP:id, VALUE:any):any eval, spread
EXP must be an identifier or a type mismatch error occurs. The
effect of SET is replacement of the item bound to the identifier by
VALUE. If the identifier is not a local variable or has not been de-
clared GLOBAL it is automatically declared FLUID with the result-
ing warning message:

*** EXP declared FLUID

EXP must not evaluate to T or NIL or an error occurs:

***** Cannot change T or NIL

SETQ(VARIABLE:id, VALUE:any):any noeval, nospread
If VARIABLE is not local or GLOBAL it is by default declared
FLUID and the warning message:

*** VARIABLE declared FLUID

appears. The value of the current binding of VARIABLE is replaced
by the value of VALUE. VARIABLE must not be T or NIL or an
error occurs:

***** Cannot change T or NIL

MACRO PROCEDURE SETQ(X);

LIST(’SET, LIST(’QUOTE, CADR X), CADDR X);

3 FUNCTIONS 22

UNFLUID(IDLIST:id-list):NIL eval, spread
The variables in IDLIST that have been declared as FLUID vari-
ables are no longer considered as fluid variables. Others are ignored.
This affects only compiled functions as free variables in interpreted
functions are automatically considered fluid [3].

3.7 Program Feature Functions

These functions provide for explicit control sequencing, and the definition
of blocks altering the scope of local variables.

3 FUNCTIONS 23

GO(LABEL:id) noeval, nospread
GO alters the normal flow of control within a PROG function. The
next statement of a PROG function to be evaluated is immediately
preceded by LABEL. A GO may only appear in the following situa-
tions:

1. At the top level of a PROG referencing a label which also ap-
pears at the top level of the same PROG.

2. As the consequent of a COND item of a COND appearing on
the top level of a PROG.

3. As the consequent of a COND item which appears as the con-
sequent of a COND item to any level.

4. As the last statement of a PROGN which appears at the top
level of a PROG or in a PROGN appearing in the consequent
of a COND to any level subject to the restrictions of 2 and 3.

5. As the last statement of a PROGN within a PROGN or as the
consequent of a COND in a PROGN to any level subject to
the restrictions of 2, 3 and 4.

If LABEL does not appear at the top level of the PROG in which
the GO appears, an error occurs:

***** LABEL is not a known label

If the GO has been placed in a position not defined by rules 1-5,
another error is detected:

***** Illegal use of GO to LABEL

3 FUNCTIONS 24

PROG(VARS:id-list, [PROGRAM:{id, any}]):any noeval, nospread
VARS is a list of ids which are considered fluid when the PROG is
interpreted and local when compiled (see “Variables and Bindings”,
section 3.6 on page 19). The PROGs variables are allocated space
when the PROG form is invoked and are deallocated when the PROG
is exited. PROG variables are initialized to NIL. The PROGRAM
is a set of expressions to be evaluated in order of their appearance
in the PROG function. Identifiers appearing in the top level of the
PROGRAM are labels which can be referenced by GO. The value re-
turned by the PROG function is determined by a RETURN function
or NIL if the PROG “falls through”.

PROGN([U:any]):any noeval, nospread
U is a set of expressions which are executed sequentially. The value
returned is the value of the last expression.

PROG2(A:any, B:any)any eval, spread
Returns the value of B.
EXPR PROCEDURE PROG2(A, B);

B;

RETURN(U:any) eval, spread
Within a PROG, RETURN terminates the evaluation of a PROG
and returns U as the value of the PROG. The restrictions on the
placement of RETURN are exactly those of GO. Improper placement
of RETURN results in the error:

***** Illegal use of RETURN

3 FUNCTIONS 25

3.8 Error Handling

ERROR(NUMBER:integer, MESSAGE:any) eval, spread
NUMBER and MESSAGE are passed back to a surrounding ER-
RORSET (the Standard LISP reader has an ERRORSET). MES-
SAGE is placed in the global variable EMSG!* and the error number
becomes the value of the surrounding ERRORSET. FLUID variables
and local bindings are unbound to return to the environment of the
ERRORSET. Global variables are not affected by the process.

ERRORSET(U:any, MSGP:boolean, TR:boolean):any eval, spread
If an error occurs during the evaluation of U, the value of NUMBER
from the ERROR call is returned as the value of ERRORSET. In
addition, if the value of MSGP is non-NIL, the MESSAGE from the
ERROR call is displayed upon both the standard output device and
the currently selected output device unless the standard output de-
vice is not open. The message appears prefixed with 5 asterisks. The
MESSAGE list is displayed without top level parentheses. The MES-
SAGE from the ERROR call will be available in the global variable
EMSG!*. The exact format of error messages generated by Standard
LISP functions described in this document are not fixed and should
not be relied upon to be in any particular form. Likewise, error
numbers generated by Standard LISP functions are implementation
dependent.
If no error occurs during the evaluation of U, the value of (LIST
(EVAL U)) is returned.
If an error has been signaled and the value of TR is non-NIL a trace-
back sequence will be initiated on the selected output device. The
traceback will display information such as unbindings of FLUID vari-
ables, argument lists and so on in an implementation dependent for-
mat.

3.9 Vectors

Vectors are structured entities in which random elements may be accessed
with an integer index. A vector has a single dimension. Its maximum size is

3 FUNCTIONS 26

determined by the implementation and available space. A suggested input
“vector notation” is defined in “Classes of Primitive Data Types”, section 2.2
on page 6 and output with EXPLODE, “Identifiers” section 3.3 on page 14.

GETV(V:vector, INDEX:integer):any eval, spread
Returns the value stored at position INDEX of the vector V. The
type mismatch error may occur. An error occurs if the INDEX does
not lie within 0. . . UPBV(V) inclusive:

***** INDEX subscript is out of range

MKVECT(UPLIM:integer):vector eval, spread
Defines and allocates space for a vector with UPLIM+1 elements
accessed as 0. . . UPLIM. Each element is initialized to NIL. An error
will occur if UPLIM is < 0 or there is not enough space for a vector
of this size:

***** A vector of size UPLIM cannot be allocated

PUTV(V:vector, INDEX:integer, VALUE:any):any eval, spread
Stores VALUE into the vector V at position INDEX. VALUE is re-
turned. The type mismatch error may occur. If INDEX does not lie
in 0. . . UPBV(V) an error occurs:

***** INDEX subscript is out of range

UPBV(U:any):NIL,integer eval, spread
Returns the upper limit of U if U is a vector, or NIL if it is not.

3 FUNCTIONS 27

3.10 Boolean Functions and Conditionals

AND([U:any]):extra-boolean noeval, nospread
AND evaluates each U until a value of NIL is found or the end of the
list is encountered. If a non-NIL value is the last value it is returned,
or NIL is returned.
FEXPR PROCEDURE AND(U);

BEGIN

IF NULL U THEN RETURN NIL;

LOOP: IF NULL CDR U THEN RETURN EVAL CAR U

ELSE IF NULL EVAL CAR U THEN RETURN NIL;

U := CDR U;

GO LOOP

END;

COND([U:cond-form]):any noeval, nospread
The antecedents of all U’s are evaluated in order of their appearance
until a non-NIL value is encountered. The consequent of the selected
U is evaluated and becomes the value of the COND. The consequent
may also contain the special functions GO and RETURN subject to
the restraints given for these functions in “Program Feature Func-
tions”, section 3.7 on page 22. In these cases COND does not have
a defined value, but rather an effect. If no antecedent is non-NIL
the value of COND is NIL. An error is detected if a U is improperly
formed:

***** Improper cond-form as argument of COND

NOT(U:any):boolean eval, spread
If U is NIL, return T else return NIL (same as function NULL).
EXPR PROCEDURE NOT(U);

U EQ NIL;

3 FUNCTIONS 28

OR([U:any]):extra-boolean noeval, nospread
U is any number of expressions which are evaluated in order of their
appearance. When one is found to be non-NIL it is returned as the
value of OR. If all are NIL, NIL is returned.
FEXPR PROCEDURE OR(U);

BEGIN SCALAR X;

LOOP: IF NULL U THEN RETURN NIL

ELSE IF (X := EVAL CAR U) THEN RETURN X;

U := CDR U;

GO LOOP

END;

3.11 Arithmetic Functions

Conversions between numeric types are provided explicitly by the FIX and
FLOAT functions and implicitly by any multi-parameter arithmetic func-
tion which receives mixed types of arguments. A conversion from fixed to
floating point numbers may result in a loss of precision without a warning
message being generated. Since integers may have a greater magnitude that
that permitted for floating numbers, an error may be signaled when the
attempted conversion cannot be done. Because the magnitude of integers
is unlimited the conversion of a floating point number to a fixed number is
always possible, the only loss of precision being the digits to the right of
the decimal point which are truncated. If a function receives mixed types of
arguments the general rule will have the fixed numbers converted to floating
before arithmetic operations are performed. In all cases an error occurs if
the parameter to an arithmetic function is not a number:

***** XXX parameter to FUNCTION is not a number

XXX is the value of the parameter at fault and FUNCTION is the name of
the function that detected the error. Exceptions to the rule are noted where
they occur.

3 FUNCTIONS 29

ABS(U:number):number eval, spread
Returns the absolute value of its argument.
EXPR PROCEDURE ABS(U);

IF LESSP(U, 0) THEN MINUS(U) ELSE U;

ADD1(U:number):number eval, spread
Returns the value of U plus 1 of the same type as U (fixed or floating).
EXPR PROCEDURE ADD1(U);

PLUS2(U, 1);

DIFFERENCE(U:number, V:number):number eval, spread
The value U - V is returned.

DIVIDE(U:number, V:number):dotted-pair eval, spread
The dotted-pair (quotient . remainder) is returned. The quotient
part is computed the same as by QUOTIENT and the remainder
the same as by REMAINDER. An error occurs if division by zero is
attempted:

***** Attempt to divide by 0 in DIVIDE

EXPR PROCEDURE DIVIDE(U, V);

(QUOTIENT(U, V) . REMAINDER(U, V));

EXPT(U:number, V:integer):number eval, spread
Returns U raised to the V power. A floating point U to an inte-
ger power V does not have V changed to a floating number before
exponentiation.

FIX(U:number):integer eval, spread
Returns an integer which corresponds to the truncated value of U.
The result of conversion must retain all significant portions of U. If
U is an integer it is returned unchanged.

3 FUNCTIONS 30

FLOAT(U:number):floating eval, spread
The floating point number corresponding to the value of the argu-
ment U is returned. Some of the least significant digits of an integer
may be lost do to the implementation of floating point numbers.
FLOAT of a floating point number returns the number unchanged.
If U is too large to represent in floating point an error occurs:

***** Argument to FLOAT is too large

GREATERP(U:number, V:number):boolean eval, spread
Returns T if U is strictly greater than V, otherwise returns NIL.

LESSP(U:number, V:number):boolean eval, spread
Returns T if U is strictly less than V, otherwise returns NIL.

MAX([U:number]):number noeval, nospread, or macro
Returns the largest of the values in U. If two or more values are the
same the first is returned.
MACRO PROCEDURE MAX(U);

EXPAND(CDR U, ’MAX2);

MAX2(U:number, V:number):number eval, spread
Returns the larger of U and V. If U and V are the same value U is
returned (U and V might be of different types).
EXPR PROCEDURE MAX2(U, V);

IF LESSP(U, V) THEN V ELSE U;

MIN([U:number]):number noeval, nospread, or macro
Returns the smallest of the values in U. If two or more values are the
same the first of these is returned.
MACRO PROCEDURE MIN(U);

EXPAND(CDR U, ’MIN2);

3 FUNCTIONS 31

MIN2(U:number, V:number):number eval, spread
Returns the smaller of its arguments. If U and V are the same value,
U is returned (U and V might be of different types).
EXPR PROCEDURE MIN2(U, V);

IF GREATERP(U, V) THEN V ELSE U;

MINUS(U:number):number eval, spread
Returns -U.
EXPR PROCEDURE MINUS(U);

DIFFERENCE(0, U);

PLUS([U:number]):number noeval, nospread, or macro
Forms the sum of all its arguments.
MACRO PROCEDURE PLUS(U);

EXPAND(CDR U, ’PLUS2);

PLUS2(U:number, V:number):number eval, spread
Returns the sum of U and V.

QUOTIENT(U:number, V:number):number eval, spread
The quotient of U divided by V is returned. Division of two positive
or two negative integers is conventional. When both U and V are
integers and exactly one of them is negative the value returned is
the negative truncation of the absolute value of U divided by the
absolute value of V. An error occurs if division by zero is attempted:

***** Attempt to divide by 0 in QUOTIENT

3 FUNCTIONS 32

REMAINDER(U:number, V:number):number eval, spread
If both U and V are integers the result is the integer remainder of
U divided by V. If either parameter is floating point, the result is
the difference between U and V*(U/V) all in floating point. If either
number is negative the remainder is negative. If both are positive or
both are negative the remainder is positive. An error occurs if V is
zero:

***** Attempt to divide by 0 in REMAINDER

EXPR PROCEDURE REMAINDER(U, V);

DIFFERENCE(U, TIMES2(QUOTIENT(U, V), V));

SUB1(U:number):number eval, spread
Returns the value of U less 1. If U is a FLOAT type number, the
value returned is U less 1.0.
EXPR PROCEDURE SUB1(U);

DIFFERENCE(U, 1);

TIMES([U:number]):number noeval, nospread, or macro
Returns the product of all its arguments.
MACRO PROCEDURE TIMES(U);

EXPAND(CDR U, ’TIMES2);

TIMES2(U:number, V:number):number eval, spread
Returns the product of U and V.

3.12 MAP Composite Functions

MAP(X:list, FN:function):any eval, spread
Applies FN to successive CDR segments of X. NIL is returned.
EXPR PROCEDURE MAP(X, FN);

WHILE X DO << FN X; X := CDR X >>;

3 FUNCTIONS 33

MAPC(X:list, FN:function):any eval, spread
FN is applied to successive CAR segments of list X. NIL is returned.
EXPR PROCEDURE MAPC(X, FN);

WHILE X DO << FN CAR X; X := CDR X >>;

MAPCAN(X:list, FN:function):any eval, spread
A concatenated list of FN applied to successive CAR elements of X
is returned.
EXPR PROCEDURE MAPCAN(X, FN);

IFNULL X THEN NIL

ELSE NCONC(FN CAR X, MAPCAN(CDR X, FN));

MAPCAR(X:list, FN:function):any eval, spread
Returned is a constructed list of FN applied to each CAR of list X.
EXPR PROCEDURE MAPCAR(X, FN);

IFNULL X THEN NIL

ELSE FN CAR X . MAPCAR(CDR X, FN);

MAPCON(X:list, FN:function):any eval, spread
Returned is a concatenated list of FN applied to successive CDR
segments of X.
EXPR PROCEDURE MAPCON(X, FN);

IFNULL X THEN NIL

ELSE NCONC(FN X, MAPCON(CDR X, FN));

MAPLIST(X:list, FN:function):any eval, spread
Returns a constructed list of FN applied to successive CDR segments
of X.
EXPR PROCEDURE MAPLIST(X, FN);

IFNULL X THEN NIL

ELSE FN X . MAPLIST(CDR X, FN);

3 FUNCTIONS 34

3.13 Composite Functions

APPEND(U:list, V:list):list eval, spread
Returns a constructed list in which the last element of U is followed
by the first element of V. The list U is copied, V is not.
EXPR PROCEDURE APPEND(U, V);

IFNULL U THEN V

ELSE CAR U . APPEND(CDR U, V);

ASSOC(U:any, V:alist):{dotted-pair, NIL} eval, spread
If U occurs as the CAR portion of an element of the alist V, the
dotted-pair in which U occurred is returned, else NIL is returned.
ASSOC might not detect a poorly formed alist so an invalid con-
struction may be detected by CAR or CDR.
EXPR PROCEDURE ASSOC(U, V);

IF NULL V THEN NIL

ELSE IF ATOM CAR V THEN

ERROR(000, LIST(V, "is a poorly formed alist"))

ELSE IF U = CAAR V THEN CAR V

ELSE ASSOC(U, CDR V);

DEFLIST(U:dlist, IND:id):list eval, spread
A ”dlist” is a list in which each element is a two element list: (ID:id
PROP:any). Each ID in U has the indicator IND with property
PROP placed on its property list by the PUT function. The value
of DEFLIST is a list of the first elements of each two element list.
Like PUT, DEFLIST may not be used to define functions.
EXPR PROCEDURE DEFLIST(U, IND);

IF NULL U THEN NIL

ELSE << PUT(CAAR U, IND, CADAR U);

CAAR U >> . DEFLIST(CDR U, IND);

3 FUNCTIONS 35

DELETE(U:any, V:list):list eval, spread
Returns V with the first top level occurrence of U removed from it.
EXPR PROCEDURE DELETE(U, V);

IF NULL V THEN NIL

ELSE IF CAR V = U THEN CDR V

ELSE CAR V . DELETE(U, CDR V);

DIGIT(U:any):boolean eval, spread
Returns T if U is a digit, otherwise NIL.
EXPR PROCEDURE DIGIT(U);

IF MEMQ(U, ’(!0 !1 !2 !3 !4 !5 !6 !7 !8 !9))

THEN T ELSE NIL;

LENGTH(X:any):integer eval, spread
The top level length of the list X is returned.
EXPR PROCEDURE LENGTH(X);

IF ATOM X THEN 0

ELSE PLUS(1, LENGTH CDR X);

LITER(U:any):boolean eval, spread
Returns T if U is a character of the alphabet, NIL otherwise.a

EXPR PROCEDURE LITER(U);

IF MEMQ(U, ’(!A !B !C !D !E !F !G !H !I !J !K !L !M

!N !O !P !Q !R !S !T !U !V !W !X !Y !Z

!a !b !c !d !e !f !g !h !i !j !k !l !m

!n !o !p !q !r !s !t !u !v !w !x !y !z))

THEN T ELSE NIL;

aThe published report omits escape characters. These are required for both
upper and lower case as some systems default to lower.

3 FUNCTIONS 36

MEMBER(A:any, B:list):extra-boolean eval, spread
Returns NIL if A is not a member of list B, returns the remainder of
B whose first element is A.
EXPR PROCEDURE MEMBER(A, B);

IF NULL B THEN NIL

ELSE IF A = CAR B THEN B

ELSE MEMBER(A, CDR B);

MEMQ(A:any, B:list):extra-boolean eval, spread
Same as MEMBER but an EQ check is used for comparison.
EXPR PROCEDURE MEMQ(A, B);

IF NULL B THEN NIL

ELSE IF A EQ CAR B THEN B

ELSE MEMQ(A, CDR B);

NCONC(U:list, V:list):list eval, spread
Concatenates V to U without copying U. The last CDR of U is
modified to point to V.
EXPR PROCEDURE NCONC(U, V);

BEGIN SCALAR W;

IF NULL U THEN RETURN V;

W := U;

WHILE CDR W DO W := CDR W;

RPLACD(W, V);

RETURN U

END;

3 FUNCTIONS 37

PAIR(U:list, V:list):alist eval, spread
U and V are lists which must have an identical number of elements.
If not, an error occurs (the 000 used in the ERROR call is arbitrary
and need not be adhered to). Returned is a list where each element
is a dotted-pair, the CAR of the pair being from U, and the CDR
the corresponding element from V.
EXPR PROCEDURE PAIR(U, V);

IF AND(U, V) THEN (CAR U . CAR V) . PAIR(CDR U, CDR V)

ELSE IF OR(U, V) THEN ERROR(000,

"Different length lists in PAIR")

ELSE NIL;

REVERSE(U:list):list eval, spread
Returns a copy of the top level of U in reverse order.
EXPR PROCEDURE REVERSE(U);

BEGIN SCALAR W;

WHILE U DO << W := CAR U . W;

U := CDR U >>;
RETURN W

END;

SASSOC(U:any, V:alist, FN:function):any eval, spread
Searches the alist V for an occurrence of U. If U is not in the alist
the evaluation of function FN is returned.
EXPR PROCEDURE SASSOC(U, V, FN);

IF NULL V THEN FN()

ELSE IF U = CAAR V THEN CAR V

ELSE SASSOC(U, CDR V, FN);

3 FUNCTIONS 38

SUBLIS(X:alist, Y:any):any eval, spread
The value returned is the result of substituting the CDR of each
element of the alist X for every occurrence of the CAR part of that
element in Y.
EXPR PROCEDURE SUBLIS(X, Y);

IF NULL X THEN Y

ELSE BEGIN SCALAR U;

U := ASSOC(Y, X);

RETURN IF U THEN CDR U

ELSE IF ATOM Y THEN Y

ELSE SUBLIS(X, CAR Y) .

SUBLIS(X, CDR Y)

END;

SUBST(U:any, V:any, W:any):any eval, spread
The value returned is the result of substituting U for all occurrences
of V in W.
EXPR PROCEDURE SUBST(U, V, W);

IF NULL W THEN NIL

ELSE IF V = W THEN U

ELSE IF ATOM W THEN W

ELSE SUBST(U, V, CAR W) . SUBST(U, V, CDR W);

3 FUNCTIONS 39

3.14 The Interpreter

APPLY(FN:{id,function}, ARGS:any-list):any eval, spread
APPLY returns the value of FN with actual parameters ARGS. The
actual parameters in ARGS are already in the form required for
binding to the formal parameters of FN. Implementation specific
portions described in English are enclosed in boxes.
EXPR PROCEDURE APPLY(FN, ARGS);

BEGIN SCALAR DEFN;

IF CODEP FN THEN RETURN

Spread the actual parameters in ARGS

following the conventions: for calling

functions, transfer to the entry point

of the function, and return the value

returned by the function.

;

IF IDP FN THEN RETURN

IF NULL(DEFN := GETD FN) THEN

ERROR(000, LIST(FN, "is an undefined function"))

ELSE IF CAR DEFN EQ ’EXPR THEN

APPLY(CDR DEFN, ARGS)

ELSE ERROR(000,

LIST(FN, "cannot be evaluated by APPLY"));

IF OR(ATOM FN, NOT(CAR FN EQ ’LAMBDA)) THEN

ERROR(000,

LIST(FN, "cannot be evaluated by APPLY"));

RETURN

Bind the actual parameters in ARGS to

the formal parameters of the lambda

expression. If the two lists are not

of equal length then ERROR(000, "Number

of parameters do not match"); The value

returned is EVAL CADDR FN.

END;

3 FUNCTIONS 40

EVAL(U:any):any eval, spread
The value of the expression U is computed. Error numbers are ar-
bitrary. Portions of EVAL involving machine specific coding are
expressed in English enclosed in boxes.
EXPR PROCEDURE EVAL(U);

BEGIN SCALAR FN;

IF CONSTANTP U THEN RETURN U;

IF IDP U THEN RETURN

U is an id. Return the value most

currently bound to U or if there

is no such binding: ERROR(000,

LIST("Unbound:", U));

IF PAIRP CAR U THEN RETURN

IF CAAR U EQ ’LAMBDA THEN APPLY(CAR U, EVLIS CDR U)

ELSE ERROR(000, LIST(CAR U,

"improperly formed LAMBDA expression"))

ELSE IF CODEP CAR U THEN

RETURN APPLY(CAR U, EVLIS CDR U);

FN := GETD CAR U;

IF NULL FN THEN

ERROR(000, LIST(CAR U, "is an undefined function"))

ELSE IF CAR FN EQ ’EXPR THEN

RETURN APPLY(CDR FN, EVLIS CDR U)

ELSE IF CAR FN EQ ’FEXPR THEN

RETURN APPLY(CDR FN, LIST CDR U)

ELSE IF CAR FN EQ ’MACRO THEN

RETURN EVAL APPLY(CDR FN, LIST U)

END;

EVLIS(U:any-list):any-list eval, spread
EVLIS returns a list of the evaluation of each element of U.
EXPR PROCEDURE EVLIS(U);

IF NULL U THEN NIL

ELSE EVAL CAR U . EVLIS CDR U;

3 FUNCTIONS 41

EXPAND(L:list, FN:function):list eval, spread
FN is a defined function of two arguments to be used in the expansion
of a MACRO. EXPAND returns a list in the form:

(FN L0 (FN L1 . . . (FN Ln−1 Ln) . . .))

where n is the number of elements in L, Li is the ith element of L.
EXPR PROCEDURE EXPAND(L,FN);

IF NULL CDR L THEN CAR L

ELSE LIST(FN, CAR L, EXPAND(CDR L, FN));

FUNCTION(FN:function):function noeval, nospread
The function FN is to be passed to another function. If FN is to have
side effects its free variables must be fluid or global. FUNCTION is
like QUOTE but its argument may be affected by compilation. We
do not consider FUNARGs in this report.

QUOTE(U:any):any noeval, nospread
Stops evaluation and returns U unevaluated.
FEXPR PROCEDURE QUOTE(U);

CAR U;

3.15 Input and Output

The user normally communicates with Standard LISP through “standard
devices”. The default devices are selected in accordance with the conventions
of the implementation site. Other input and output devices or files may be
selected for reading and writing using the functions described herein.

3 FUNCTIONS 42

CLOSE(FILEHANDLE:any):any eval, spread
Closes the file with the internal name FILEHANDLE writing any
necessary end of file marks and such. The value of FILEHANDLE
is that returned by the corresponding OPEN. The value returned is
the value of FILEHANDLE. An error occurs if the file can not be
closed.

***** FILEHANDLE could not be closed

EJECT():NIL eval, spread
Skip to the top of the next output page. Automatic EJECTs are
executed by the print functions when the length set by the PAGE-
LENGTH function is exceeded.

LINELENGTH(LEN:{integer, NIL}):integer eval, spread
If LEN is an integer the maximum line length to be printed before
the print functions initiate an automatic TERPRI is set to the value
LEN. No initial Standard LISP line length is assumed. The previous
line length is returned except when LEN is NIL. This special case
returns the current line length and does not cause it to be reset. An
error occurs if the requested line length is too large for the currently
selected output file or LEN is negative or zero.

***** LEN is an invalid line length

LPOSN():integer eval, spread
Returns the number of lines printed on the current page. At the top
of a page, 0 is returned.

3 FUNCTIONS 43

OPEN(FILE:any, HOW:id):any eval, spread
Open the file with the system dependent name FILE for output if
HOW is EQ to OUTPUT, or input if HOW is EQ to INPUT. If the
file is opened successfully, a value which is internally associated with
the file is returned. This value must be saved for use by RDS and
WRS. An error occurs if HOW is something other than INPUT or
OUTPUT or the file can’t be opened.

***** HOW is not option for OPEN

***** FILE could not be opened

PAGELENGTH(LEN:{integer, NIL}):integer eval, spread
Sets the vertical length (in lines) of an output page. Automatic page
EJECTs are executed by the print functions when this length is
reached. The initial vertical length is implementation specific. The
previous page length is returned. If LEN is 0, no automatic page
ejects will occur.

POSN():integer eval, spread
Returns the number of characters in the output buffer. When the
buffer is empty, 0 is returned.

PRINC(U:id):id eval, spread
U must be a single character id such as produced by EXPLODE or
read by READCH or the value of !$EOL!$. The effect is the character
U displayed upon the currently selected output device. The value of
!$EOL!$ causes termination of the current line like a call to TERPRI.

PRINT(U:any):any eval, spread
Displays U in READ readable format and terminates the print line.
The value of U is returned.
EXPR PROCEDURE PRINT(U);

<< PRIN1 U; TERPRI(); U >>;

3 FUNCTIONS 44

PRIN1(U:any):any eval, spread
U is displayed in a READ readable form. The format of display is
the result of EXPLODE expansion; special characters are prefixed
with the escape character !, and strings are enclosed in ”. . . ”. Lists
are displayed in list-notation and vectors in vector-notation.

PRIN2(U:any):any eval, spread
U is displayed upon the currently selected print device but output is
not READ readable. The value of U is returned. Items are displayed
as described in the EXPLODE function with the exceptions that
the escape character does not prefix special characters and strings
are not enclosed in ”. . . ”. Lists are displayed in list-notation and
vectors in vector-notation. The value of U is returned.

RDS(FILEHANDLE:any):any eval, spread
Input from the currently selected input file is suspended and fur-
ther input comes from the file named. FILEHANDLE is a system
dependent internal name which is a value returned by OPEN. If
FILEHANDLE is NIL the standard input device is selected. When
end of file is reached on a non-standard input device, the standard
input device is reselected. When end of file occurs on the standard
input device the Standard LISP reader terminates. RDS returns the
internal name of the previously selected input file.

***** FILEHANDLE could not be selected for input

3 FUNCTIONS 45

READ():any
The next expression from the file currently selected for input. Valid
input forms are: vector-notation, dot-notation, list-notation, num-
bers, function-pointers, strings, and identifiers with escape charac-
ters. Identifiers are interned onW the OBLIST (see the INTERN
function in ”Identifiers”, section 3.3 on page 14). READ returns the
value of !$EOF!$ when the end of the currently selected input file is
reached.

READCH():id
Returns the next interned character from the file currently selected
for input. Two special cases occur. If all the characters in an input
record have been read, the value of !$EOL!$ is returned. If the file
selected for input has all been read the value of !$EOF!$ is returned.
Comments delimited by % and end-of-line are not transparent to
READCH.

TERPRI():NIL
The current print line is terminated.

WRS(FILEHANDLE:any):any eval, spread
Output to the currently active output file is suspended and further
output is directed to the file named. FILEHANDLE is an internal
name which is returned by OPEN. The file named must have been
opened for output. If FILEHANDLE is NIL the standard output
device is selected. WRS returns the internal name of the previously
selected output file.

***** FILEHANDLE could not be selected for output

3.16 LISP Reader

An EVAL read loop has been chosen to drive a Standard LISP system to
provide a continuity in functional syntax. Choices of messages and the

4 SYSTEM GLOBAL VARIABLES 46

amount of extra information displayed are decisions left to the implementor.

EXPR PROCEDURE STANDARD!-LISP();

BEGIN SCALAR VALUE;

RDS NIL; WRS NIL;

PRIN2 "Standard LISP"; TERPRI();

WHILE T DO

<< PRIN2 "EVAL:"; TERPRI();

VALUE := ERRORSET(QUOTE EVAL READ(), T, T);

IF NOT ATOM VALUE THEN PRINT CAR VALUE;

TERPRI() >>;
END;

QUIT()
Causes termination of the LISP reader and control to be transferred
to the operating system.

4 System GLOBAL Variables

These variables provide global control of the LISP system, or implement
values which are constant throughout execution.2

*COMP = NIL global
The value of !*COMP controls whether or not PUTD compiles the
function defined in its arguments before defining it. If !*COMP is
NIL the function is defined as an xEXPR. If !*COMP is something
else the function is first compiled. Compilation will produce certain
changes in the semantics of functions particularly FLUID type access.

EMSG* = NIL global
Will contain the MESSAGE generated by the last ERROR call (see
“Error Handling” section 3.8 on page 25).

2The published document does not specify that all these are GLOBAL.

5 THE EXTENDED SYNTAX 47

EOF = <an uninterned identifier> global
The value of !$EOF!$ is returned by all input functions when the end
of the currently selected input file is reached.

EOL = <an uninterned identifier> global
The value of !$EOL!$ is returned by READCH when it reaches the
end of a logical input record. Likewise PRINC will terminate its
current line (like a call to TERPRI) when !$EOL!$ is its argument.

*GC = NIL global
!*GC controls the printing of garbage collector messages. If NIL
no indication of garbage collection may occur. If non-NIL various
system dependent messages may be displayed.

NIL = NIL global
NIL is a special global variable. It is protected from being modified
by SET or SETQ.

*RAISE = NIL global
If !*RAISE is non-NIL all characters input through Standard LISP
input/output functions will be raised to upper case. If !*RAISE is
NIL characters will be input as is.

T = T global
T is a special global variable. It is protected from being modified by
SET or SETQ.

5 The Extended Syntax

Whenever it is possible to define Standard LISP functions in LISP the text
of the function will appear in an extended syntax. These definitions are
supplied as an aid to understanding the behavior of functions and not as a
strict implementation guide. A formal scheme for the translation of extended
syntax to Standard LISP is presented to eliminate misinterpretation of the
definitions.

5 THE EXTENDED SYNTAX 48

5.1 Definition

The goal of the transformation scheme is to produce a PUTD invocation
which has the function translated from the extended syntax as its actual
parameter. A rule has a name in brackets <. . .> by which it is known
and is defined by what follows the meta symbol ::=. Each rule of the set
consists of one or more “alternatives” separated by the | meta symbol, being
the different ways in which the rule will be matched by source text. Each
alternative is composed of a “recognizer” and a “generator” separated by
the =⇒ meta symbol. The recognizer is a concatenation of any of three
different forms. 1) Terminals - Upper case lexemes and punctuation which
is not part of the meta syntax represent items which must appear as is in the
source text for the rule to succeed. 2) Rules - Lower case lexemes enclosed
in <. . .> are names of other rules. The source text is matched if the named
rule succeeds. 3) Primitives - Lower case singletons not in brackets are
names of primitives or primitive classes of Standard LISP. The syntax and
semantics of the primitives are given in Part I.

The recognizer portion of the following rule matches an extended syntax
procedure:

<function> ::= ftype PROCEDURE id (<id list>);
<statement>; =⇒

A function is recognized as an “ftype” (one of the tokens EXPR, FEXPR,
etc.) followed by the keyword PROCEDURE, followed by an “id” (the name
of the function), followed by an <id list> (the formal parameter names)
enclosed in parentheses. A semicolon terminates the title line. The body of
the function is a <statement> followed by a semicolon. For example:

EXPR PROCEDURE NULL(X); EQ(X, NIL);

satisfies the recognizer, causes the generator to be activated and the rule to
be matched successfully.

The generator is a template into which generated items are substituted. The
three syntactic entities have corresponding meanings when they appear in
the generator portion. 1) Terminals - These lexemes are copied as is to the
generated text. 2) Rules - If a rule has succeeded in the recognizer section
then the value of the rule is the result of the generator portion of that rule.
3) Primitives - When primitives are matched the primitive lexeme replaces
its occurrence in the generator.

5 THE EXTENDED SYNTAX 49

If more than one occurrence of an item would cause ambiguity in the gen-
erator portion this entity appears with a bracketed subscript. Thus:

<conditional> ::=
IF <expression> THEN <statement1>

ELSE <statement2> . . .

has occurrences of two different <statement>s. The generator portion uses
the subscripted entities to reference the proper generated value.

The <function> rule appears in its entirety as:

<function> ::= ftype PROCEDURE id (<id list>);<statement>; =⇒
(PUTD (QUOTE id)

(QUOTE ftype)
(QUOTE (LAMBDA (<id list>) <statement>)))

If the recognizer succeeds (as it would in the case of the NULL procedure
example) the generator returns:

(PUTD (QUOTE NULL) (QUOTE EXPR) (QUOTE (LAMBDA (X) (EQ X NIL))))

The identifier in the template is replaced by the procedure name NULL, <id
list> by the single formal parameter X, the <statement> by (EQ X NIL)
which is the result of the <statement> generator. EXPR replaces ftype, the
type of the defined procedure.

5.2 The Extended Syntax Rules

<function> ::= ftype PROCEDURE id (<id list>); <statement>; =⇒
(PUTD (QUOTE id)

(QUOTE ftype)
(QUOTE (LAMBDA (<id list>) <statement>)))

<id list> ::= id =⇒ id |
id, <id list> =⇒ id <id list> |
=⇒ NIL

<statement> ::= <expression> =⇒ <expression> |
<proper statement> =⇒ <proper statement>

<proper statement> ::=
<assignment statement> =⇒ <assignment statement> |

5 THE EXTENDED SYNTAX 50

<conditional statement> =⇒ <conditional statement> |
<while statement> =⇒ <while statement> |
<compound statement> =⇒ <compound statement>

<assignment statement> ::= id := <expression> =⇒
(SETQ id <expression>)

<conditional statement> ::=
IF <expression> THEN <statement1> ELSE <statement2> =⇒

(COND (<expression> <statement1>)(T <statement2>)) |
IF <expression> THEN <statement> =⇒

(COND (<expression> <statement>))

<while statement> ::= WHILE <expression> DO <statement> =⇒
(PROG NIL
LBL (COND ((NULL <expression>) (RETURN NIL)))

<statement>
(GO LBL))

<compound statement> ::=
BEGIN SCALAR <id list>; <program list> END =⇒

(PROG (<id list>) <program list>) |
BEGIN <program list> END =⇒

(PROG NIL <program list>) |
<< <statement list> >> =⇒ (PROGN <statement list>)

<program list> ::= <full statement> =⇒ <full statement> |
<full statement> <program list> =⇒

<full statement> <program list>

<full statement> ::= <statement> =⇒ <statement> | id: =⇒ id

<statement list> ::= <statement> =⇒ <statement> |
<statement>; <statement list> =⇒

<statement> <statement list>

<expression> ::=
<expression1> . <expression2> =⇒

(CONS <expression1> <expression2> |

REFERENCES 51

<expression1> = <expression2> =⇒
(EQUAL <expression1> <expression2>) |

<expression1> EQ <expression2> =⇒
(EQ <expression1> <expression2>) |

’<expression> =⇒ (QUOTE <expression>) |
function <expression> =⇒ (function <expression>) |
function(<argument list>) =⇒ (function <argument list>) |
number =⇒ number |
id =⇒ id

<argument list> ::= () =⇒ |
<expression> =⇒ <expression> |
<expression>, <argument list> =⇒ <expression> <argument list>

Notice the three infix operators . EQ and = which are translated into calls
on CONS, EQ, and EQUAL respectively. Note also that a call on a function
which has no formal parameters must have () as an argument list. The
QUOTE function is abbreviated by ’.

References

[1] Computation Center. LISP Reference Manual, CDC-6000. The Uni-
versity of Texas at Austin.

[2] Stanford Center for Information Processing. LISP/360 Reference Man-
ual. Stanford University.

[3] M. L. Griss and A. C. Hearn. A portable LISP compiler. Software—
Practice and Experience, 11:541–605, June 1981.

[4] A. C. Hearn. Standard LISP. SIGPLAN Notices, 4:28–49, 1969.
Reprinted in SIGSAM Bulletin, ACM, Vol. 13, 1969, p. 28-49.

[5] A. C. Hearn. REDUCE user’s manual: Version 3.3. Publication CP78
(Rev 1/88), RAND, 1988.

[6] MACLISP Reference Manual, March 1976.

[7] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P.
Hart, and Michael I. Levin. LISP 1.5 Programmers Manual. The M.I.T.
Press, Cambridge, Massachusettes, 1965.

REFERENCES 52

[8] Mats Nordstrom, Erik Sandewall, and Diz Breslow. LISP F1: A FOR-
TRAN Implementation of LISP 1.5. Uppsala University, Department
of Computer Sciences.

[9] Lynn H. Quam and Whitfield Diffie. Stanford LISP 1.6 Manual. Stan-
ford Artificial Intelligence Laboratory, operating note 28.7 edition.

[10] Warren Teitelman. INTERLISP Reference Manual. XEROX, Palo Alto
Research Centers, 3333 Coyote Road, Palo Alto, California 94304, 1978.

	Introduction
	Preliminaries
	Primitive Data Types
	Classes of Primitive Data Types
	Structures
	Function Descriptions
	Function Types
	Error and Warning Messages
	Comments

	Functions
	Elementary Predicates
	Functions on Dotted-Pairs
	Identifiers
	Property List Functions
	Function Definition
	Variables and Bindings
	Program Feature Functions
	Error Handling
	Vectors
	Boolean Functions and Conditionals
	Arithmetic Functions
	MAP Composite Functions
	Composite Functions
	The Interpreter
	Input and Output
	LISP Reader

	System GLOBAL Variables
	The Extended Syntax
	Definition
	The Extended Syntax Rules

