REDUCE: The First Forty Years*

Anthony C. Hearn

Santa Monica, California, USA

Abstract

Volker Weispfenning and his group in Passau have had a ldaggist in computer algebra. In this
talk, REDUCE, one of the algebra programs they use, will Iseuised. The development of this
program began over forty years ago. We shall discuss thgmiégicisions that have influenced its
long-term survival, and the way in which the program hases@iwith time.

1 Introduction

Volker Weispfenningyww. f mi . uni - passau. de/ al gebr a/ st af f/ wvi t a. php3)began
his studies in Mathematics at the University of Heidelberg963. In the same year, | began
writing a computer program that would be distributed withifew years as REDUCE. It all
began while | was a postdoc in Theoretical Physics at Stenfearking with Feynman dia-
grams which were becoming increasingly difficult to caltelly hand. | therefore wondered
if such calculations could be done by computer.

A new professor in the Stanford Computer Science Departndehih McCarthy, gave a
talk in the Physics Department proposing his computer laggiLisp as the basis for non-
numerical calculations in physics. | was out of town, andefare missed this talk. However,
a colleague, knowing of my interest in automating Feynmag@dim calculations, suggested
| talk to McCarthy about his work. To cut a long story short, G&rthy convinced me that his
language would be a suitable basis for such calculatiorrs.oP&is efforts to convince me
included the offer of free access to a new computer he wasranogun those days, getting
computer access was not a trivial thing. Computers at thrad tivere expensive with limited
access, so such an offer was irresistible! Thus began my in@¥mbolic computation.

The first publication concerning this work appeared in 1966466a]. This paper talked
about the specific applications of algebraic techniquedementary particle physics com-
putations. It quickly became obvious to me, however, thattéthniques | was developing
were quite general, and in 1968 the first paper describinqhamgé¢algebra system REDUCE
was published [Hea68]. “REDUCE” is not an acronym, althougbntinue to spell it in cap-

*Invited paper presented at the A3L Conference in Honor of6liif Birthday of Volker Weispfenning, April
2005.

2 A. C. Hearn

ital letters. Its name was actually intended as a joke; algebra systesmsas now tended
to produce very large outputs for many problems, rather tiegiuce the results to a more
manageable form. “REDUCE” seemed to be the right name fdr awsystem.

REDUCE 2 first appeared in 1970. The big change in this relemsethat the whole
system was written in an Algol-like dialect, RLISP, rathieauh in the rather awkward paren-
thesized notation of Lisp used for the original REDUCE. Big time, the system was being
distributed to other users, thus marking the beginningsusfea community.

Whereas REDUCE 2 was essentially the work of a single peRERUCE 3, first dis-
tributed in 1983, included several significant new packabeas were the work of others,
in particular those for analytic integration, multivagdtctorization, arbitrary precision real
arithmetic and equation solving. Over a hundred people hawebeen involved with enhanc-
ing the system, plus many more who take the time to reportlpned or suggest improve-
ments. My heartfelt thanks go to all these people. A list ef¢bntributors may be found on
the REDUCE web sita,educe- al gebra. com

2 Design Goals

From the beginning, REDUCE was designed with a number ofsgioaiind, nearly all of
which have contributed to its long-term use. One such degighis portability. In the early
days, the computing requirements were relatively high vagpect to the resources available.
As a result, | had to be sure that | could use whatever comg@ijuipment was available
to me. Using Lisp provided a certain level of portabilityps@ most available machines sup-
ported it.

As time went on, the underlying Lisp language itself begaewolve into different di-
alects. Consequently, the availability of a “Lisp” on a giveomputer no longer guaranteed
that | could easily use that machine. In order to compensatthfs, | limited the REDUCE
implementation to a specific subset of Lisp that one could &itlder directly or by sim-
ple mappings of any of the available Lisp implementatiorfaud developed Standard Lisp
[Hea66b, MHGG79], a uniform subset of Lisp that could belgasiplemented on any com-
puter that already supported a working Lisp system. Itiale would map the Standard
Lisp subset onto the Lisp of the target machine. However, @ mprogramming tools were
written in Standard Lisp itself, culminating in a portablish compiler in 1981 [GH79], we
chose instead to force the Lisp which we were using to contorthe Standard Lisp defini-
tions. In other words, we were running in Standard Lisp ftsgther than some other dialect.
Complementing this activity was the development of spe&ifandard Lisp implementations
[GBM82, Nor93]. A description of one of these systems, CShyrhe found in Arthur Nor-
man'’s paper at this meeting.

One consequence of this activity has been that when implerstarget a new machine

TIn the 1960's, input devices only had capital letters, hereagly all programs those days had upper-case names.

REDUCE 3

for Lisp development, they know that they can run REDUCE éythemain compatible with
the Standard Lisp protocols. In particular, they can usepthrgable compiler for producing
high quality efficient code. A look at statistics we have ected for running REDUCE on
a variety of different computing systems that use the péetabmpiler show a strong cor-
relation between the published execution speeds of the imehnd the times for running
standard tests [MH85]. The range of these machines has heétnextreme. In 1985, for
example, a PSL implementation on a Cray X-MP, the worlds’strpowerful machine at the
time, set the standard for timings. At the other end of thespen, Arthur Norman recently
reported the porting of CSL and REDUCE to a Linksys routeitiogsunder $US100, and
running the REDUCE tests at about 10% of the speed of the X-MP.

The Lisp standards we adopted have enabled us to impleméntRE on a wide variety
of machine architectures with essentially no changes tREEBBUCE sources themselves.
Of course, a new machine sometimes requires some systeemdiept support to allow for
differences in such things as input and output, and charémteats. However, coding this
support has been kept to a minimum.

Anotherimportant REDUCE development goal has been moidlar order for a system
as large and complicated as REDUCE to be maintained anddedeiit is desirable that
new facilities can be added without requiring changes toetkisting code. In particular,
a knowledgeable user should be able to add a new applicatibnseme assurance that
his or her program can coexist happily with the existing cofteachieve this goal, many
of the facilities in REDUCE 3 are written to depend only on thelerlying Standard Lisp
subset, and interfaced to the rest of the system througkesritr various system tables. In
this manner, we were able to add facilities for handling masi types of arithmetic such as
arbitrary precision real numbers without requiring any anaystem changes.

One of the most important attributes of REDUCE is its worldevacceptance as a useful
problem solving tool. As a result, there is a well-estaldidibase of knowledge about the
use of the program in a wide variety of application areas.s€happlication areas include
guantum electrodynamics and quantum chromodynamicgrietmetwork analysis, celes-
tial mechanics, fluid mechanics, general relativity, nugsmnalysis, plasma physics, and a
variety of engineering problems such as turbine and shipdasign. This maturity provides
the user with some assurance about its reliability and efasgseo

3 REDUCE Today

Over forty years after the project began, REDUCE remainsaridwide use, and groups are
still developing new code for it. At the present time, REDUEIudes approximately fifty
contributed packages. Several of these are still undeveadigvelopment, including some
described atww. r edl og. eu developed by members of Volker Weispfenning’s group.

A commitment to release updated and expanded versions afyftem was made from
the beginning, since | realized that the techniques of cderpalgebra would continue to

4 A. C. Hearn

develop and improve, thus requiring an algebra system tog#o keep pace with these
developments. The complete source code was also distlitatencourage users’ under-
standing of the program. In the early days, new versions efpftogram were released at
fairly regular intervals, often yearly. However, as thingatured and the code became more
stable, often the only reason for an update was to correc thag had been discovered, or to
include improved code in a particular package. To obviagerntbed for a complete new ver-
sion for these purposes, we began a few years ago to devefmgiehes” mechanism, which
enables users to download a file from the Internet contaioangections to their version. In
that way, a base version could last several years, with ttehpa file giving users access to
improved code on a regular basis. The most recent versiorsbfliased REDUCE, which
uses system-independent pseudocode for loading the ggvekages, also allows users to
update to the latest version of these patches by a simple-e@&men command.

However, there is a small group of developers, numberingiatveenty, but widely dis-
tributed geographically, who require more extensive upsldd their code than the patch
mechanism could provide (e.g., a new package, or a commetganization of an existing
package). This includes members of Volker Weispfenningisig. To meet this need, Arthur
Norman and | developed a robust Web-based mechanism [NH&S3habled members of the
development group to keep their copies of REDUCE in syncls fidpresents one of several
ways in which REDUCE is taking advantage of the possibditéered by the World Wide
Web. Others include online access to demonstration vessand various related projects. A
description of these may also be found atiuce- al gebra. com

4 Future Developments

Working with REDUCE over so many years has generally beemanding experience for
me. However, there have been a few disappointments. Onetinyar concerns some ideas
that are intended to form the basis of a future version of REBWREDUCE 4). In the early
90’s, Eberhard Schriifer drew my attention to some work alessorted logic that he thought
was a better approach to object-oriented algebraic maatipulthan that provided by the ex-
isting methods at that time. He convinced me of this, andtteyeve produced a system that
supported this method. We presented the ideas on severdions, and published a paper
[HS93] describing them. However, we never had any positeslback from anyone, and so
further development has proceeded slowly. | am hopefultthiatversion will eventually be
distributed, but it needs a lot more work before that happémsyone would like to collab-
orate on this project, | would be happy to discuss the ided#ls them and give them access
to the existing code.

REDUCE

5 Conclusions

Forty years is a long time for a computer program to survivariiy that time it has been
of considerable use to a large number of people througheuivtbrld. In this paper | have
tried to highlight some of the reasons why the program haedaso long. Its continuing
development will depend to a large extent on the dedicatedk wbgroups like those of
Volker Weispfenning, who are still extending the capaieititof the program, thus making it
even more useful to its user community.

References

[GBM82]

[GH79]

[Hea664a]

[Hea66b]
[Heab8]

[HS93]

[MH85]

[MHGG79]

[NH99]

[Nor93]

Martin L Griss, Eric Benson, and Gerald Maguire. P8Lportable lisp system.
In ACM Symposiumon Lisp and Functional Programming, 1982.

Martin L. Griss and Anthony C. Hearn. Portable LISRmmler. Software -
Practice and Experience, 11:541-605, 1979.

A. C. Hearn. Computation of algebraic propertieslementary particle reac-
tions using a digital compute€omm. ACM, 9(8):573-577, 1966.

A. C. Hearn. Standard LisBLGPLAN Notices, 4(9), 1966.

Anthony C. Hearn. REDUCE: A user-oriented inteikacsystem for algebraic
simplification. In M. Klerer and J. Reinfelds, editotsteractive Systems for
Experimental Applied Mathematics, pages 79-90, New York, 1968. Academic
Press.

Anthony C. Hearn and Eberhard Schriifer. An ordetesbapproach to algebraic
computation. InProc. DISCO '93, Lecture Notes on Comp. Science, volume
722, pages 134-144. Springer-Verlag, 1993.

Jed B. Marti and Anthony C. Hearn. REDUCE as a LISP lmenark. S GSAM
Bulletin, 19(3):8-16, August 1985.

J. B. Marti, A. C. Hearn, M. L. Griss, and C. Griss. aBtlard Lisp Report.
Sgplan Notices, ACM, 14(10):48-68, 1979.

Arthur C. Norman and Anthony C. Hearn. Synchroniaatdf distributed de-
velopment software. IRroceedings of IMAC Workshop, |SAAC’ 99, Vancouver,
Canada, June 1999.

A. C. Norman. Compact delivery support for REDUCH. Rroc. DISCO ' 93,
Lecture Notes on Comp. Science, volume 722, pages 331-340. Springer-Verlag,
1993.

A. C. Hearn

Anthony C. (Tony) Hearn is an adjunct staff member at RAND in Santa Monica, Cali-
fornia and at the IDA Center for Computing Sciences in Bowlaryland. He received
his undergraduate education at the University of Adelam&ustralia before obtaining a
Ph.D. degree in Theoretical Physics from Cambridge Unityeirs 1962. From 1962 until
1964 he was a Research Associate in Physics at Stanfordrsifyyend returned there
as an Assistant Professor in 1965 after a year at the Ruthldrtboratory in England. In
1969 he joined the University of Utah as an Associate Proféa$hysics, and was made
Professor in 1971. From 1973 until 1980 he was Professor dairi@an of the Depart-
ment of Computer Science. He joined RAND in July, 1980 as H#atie Information
Sciences Department, a position he held until August 19&4wvkk a Resident Scholar at
RAND from 1990 until 1996.

hearn@ and. org www. r and. or g/ per sonal / hearn

