| Up | Next | Prev | PrevTail | Tail |
The residue \(\mathop {\mathrm {Res}}\limits _{z=a} f(z)\) of a function \(f(z)\) at the point \(a\in \mathbb {C}\) is defined as
If \(f(z)\) is given by a Laurent series expansion at \(z=a\)
residue(f,z,a) determines
the residue of \(f\) at the point \(z=a\) if \(f\) is meromorphic at \(z=a\). The calculation of residues
at essential singularities of \(f\) is not supported, as are the residues of factorial
terms.2
poleorder(f,z,a) determines the pole order of \(f\) at the point \(z=a\) if \(f\) is meromorphic at
\(z=a\).
Note that both functions use the operator taylor in connection with representations
(\ref {eq:Laurent})–(\ref {eq:Laurent2}).
Here are some examples:
2: residue(x/(x^2-2),x,sqrt(2));
1
---
2
3: poleorder(x/(x^2-2),x,sqrt(2));
1
4: residue(sin(x)/(x^2-2),x,sqrt(2));
sqrt(2)*sin(sqrt(2))
----------------------
4
5: poleorder(sin(x)/(x^2-2),x,sqrt(2));
1
6: residue(1/(x-1)^m/(x-2)^2,x,2);
- m
7: poleorder(1/(x-1)/(x-2)^2,x,2);
2
8: residue(sin(x)/x^2,x,0);
1
9: poleorder(sin(x)/x^2,x,0);
1
10: residue((1+x^2)/(1-x^2),x,1);
-1
11: poleorder((1+x^2)/(1-x^2),x,1);
1
12: residue((1+x^2)/(1-x^2),x,-1);
1
13: poleorder((1+x^2)/(1-x^2),x,-1);
1
14: residue(tan(x),x,pi/2);
-1
15: poleorder(tan(x),x,pi/2);
1
16: residue((x^n-y^n)/(x-y),x,y);
0
17: poleorder((x^n-y^n)/(x-y),x,y);
0
18: residue((x^n-y^n)/(x-y)^2,x,y);
n
y *n
------
y
19: poleorder((x^n-y^n)/(x-y)^2,x,y);
1
20: residue(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
-2
21: poleorder(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
1
22: for k:=1:2 sum residue((a+b*x+c*x^2)/(d+e*x+f*x^2),x,
part(part(solve(d+e*x+f*x^2,x),k),2));
b*f - c*e
-----------
2
f
23: residue(x^3/sin(1/x)^2,x,infinity);
- 1
------
15
24: residue(x^3*sin(1/x)^2,x,infinity);
-1
25: residue(gamma(x),x,-1);
-1
26: residue(psi(x),x,-1);
-1
27: on fullroots;
28: for k:=1:3 sum
28: residue((a+b*x+c*x^2+d*x^3)/(e+f*x+g*x^2+h*x^3),x,
28: part(part(solve(e+f*x+g*x^2+h*x^3,x),k),2));
0
| Up | Next | Prev | PrevTail | Front |
2This code was written by Wolfram Koepf.