Up | Next | Prev | PrevTail | Tail |
The residue \(\mathop {\mathrm {Res}}\limits _{z=a} f(z)\) of a function \(f(z)\) at the point \(a\in \mathbb {C}\) is defined as
If \(f(z)\) is given by a Laurent series expansion at \(z=a\)
residue
(f,z,a)
determines
the residue of \(f\) at the point \(z=a\) if \(f\) is meromorphic at \(z=a\). The calculation of residues
at essential singularities of \(f\) is not supported, as are the residues of factorial
terms.2
poleorder
(f,z,a)
determines the pole order of \(f\) at the point \(z=a\) if \(f\) is meromorphic at
\(z=a\).
Note that both functions use the operator taylor
in connection with representations
(\ref {eq:Laurent})–(\ref {eq:Laurent2}).
Here are some examples:
2: residue(x/(x^2-2),x,sqrt(2)); 1 --- 2 3: poleorder(x/(x^2-2),x,sqrt(2)); 1 4: residue(sin(x)/(x^2-2),x,sqrt(2)); sqrt(2)*sin(sqrt(2)) ---------------------- 4 5: poleorder(sin(x)/(x^2-2),x,sqrt(2)); 1 6: residue(1/(x-1)^m/(x-2)^2,x,2); - m 7: poleorder(1/(x-1)/(x-2)^2,x,2); 2 8: residue(sin(x)/x^2,x,0); 1 9: poleorder(sin(x)/x^2,x,0); 1 10: residue((1+x^2)/(1-x^2),x,1); -1 11: poleorder((1+x^2)/(1-x^2),x,1); 1 12: residue((1+x^2)/(1-x^2),x,-1); 1 13: poleorder((1+x^2)/(1-x^2),x,-1); 1 14: residue(tan(x),x,pi/2); -1 15: poleorder(tan(x),x,pi/2); 1 16: residue((x^n-y^n)/(x-y),x,y); 0 17: poleorder((x^n-y^n)/(x-y),x,y); 0 18: residue((x^n-y^n)/(x-y)^2,x,y); n y *n ------ y 19: poleorder((x^n-y^n)/(x-y)^2,x,y); 1 20: residue(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2); -2 21: poleorder(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2); 1 22: for k:=1:2 sum residue((a+b*x+c*x^2)/(d+e*x+f*x^2),x, part(part(solve(d+e*x+f*x^2,x),k),2)); b*f - c*e ----------- 2 f 23: residue(x^3/sin(1/x)^2,x,infinity); - 1 ------ 15 24: residue(x^3*sin(1/x)^2,x,infinity); -1 25: residue(gamma(x),x,-1); -1 26: residue(psi(x),x,-1); -1 27: on fullroots; 28: for k:=1:3 sum 28: residue((a+b*x+c*x^2+d*x^3)/(e+f*x+g*x^2+h*x^3),x, 28: part(part(solve(e+f*x+g*x^2+h*x^3,x),k),2)); 0
Up | Next | Prev | PrevTail | Front |